All Issue

2020 Vol.65, Issue 3 Preview Page

Research Article

September 2020. pp. 199-213

Ahn, E. K., Y. J. Won, H. M. Park, K. H. Jung, and U. J. Hyun. 2018. Feed value and yield potential of main whole-crop silage rice cultivars with harvesting time in the central plains of Korea. Korean J Crop Sci. 63 : 294-303.
Ando, I., C. Kaneda, M. Yokoo, H. Nemoto, T. Hata, K. Ise, R. Ikeda, Y. Akama, A. Nakane et al. 2004. ‡Sari Queen‡, a new aromatic rice cultivar with basmati rice grain character. Bulletin of the National Institute of Crop Science. 5 : 53-66.
Calingacion, M., A. Laborte, A. Nelson, A. Resurreccion, J. C. Concepcion, V. D. Daygon, R. Mumm, R. Reinke, S. Dipti et al. 2014. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PloS one. 9(1) : e85106.
de Mendiburu, F. and M. F. de Mendiburu. 2019. Package 'agricolae'. R Package Version : 1.2-8.
Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, and Q. Zhang. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics. 112(6) : 1164-1171.
Fan, C., S. Yu, C. Wang, and Y. Xing. 2009. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theoretical and Applied Genetics. 118(3) : 465-472.
Korea Seed and Variety Service (KSVS). 2005. The guidelines of characteristics for application and registration on new varieties in rice. Anyang. Korea. pp. 8-14.
Huang, R., L. Jiang, J. Zheng, T. Wang, H. Wang, Y. Huang, and Z. Hong. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends in plant science. 18(4) : 218-226.
Huang, X., Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, Y. Guo, L. Deng et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature genetics. 44(1) : 32-39. doi:10. 1038/ng.1018.
Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B.-I. Shimizu et al. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature genetics. 45(6) : 707-711.
Juliano, B. 1979. The chemical basis of rice grain quality In: Proceedings of the workshop on chemical aspects of rice grain quality. International Rice Research Institute. Los Banos. Phiippines. pp. 69-90.
Kassambara, A. and F. Mundt. 2017. Package 'factoextra'. Extract and visualize the results of multivariate data analyses. R topics documented : 75.
Kim, S. R., J. Ramos, M. Ashikari, P. S. Vrik, E. A. Torres, E. Nissila, S. L. Hechanova, R. Mauleon, and K. K. Jena. 2016. Development and validation of allele-specific SNP/indle markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice. 9 : 12.
Lee, C. M., J. H. Park, B. K. Kim, J. H. Seo, G. E. Lee, S. Jang, and H. J. Koh. 2015. Influence of multi-gene allele combinations on grain size of rice and development of a regression equation model to predict grain parameters. Rice. 8(1) : 33.
Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li et al. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature genetics. 43(12) : 1266-1269.
Mao, H., S. Sun, J. Yao, C. Wang, S. Yu, C. Xu, X. Li, and Q. Zhang. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences. 107(45) : 19579-19584.
Mo, Y., J.-M. Jeong, B.-K. Kim, S.-W. Kwon, and J.-U. Jeung. 2020. Utilization of Elite Korean Japonica Rice Varieties for Association Mapping of Heading Time, Culm Length, and Amylose and Protein Content. Korean Journal of Crop Science. 65(1) : 1-21.
Ngangkham, U., S. Samantaray, M. K. Yadav, A. Kumar, P. Chidambaranathan, and J. L. Katara. 2018. Effect of multiple allelic combinations of genes on regulating grain size in rice. PloS one. 13(1) : e0190684. doi:10.1371/journal.pone.0190684.
Park, H. S., M. K. Baek, J. K. Nam, W. C. Shin, J. M. Jeong, G. M. Lee, S. G. Park, C. S. Kim, Y. C. Cho et al. 2017. Development and characterization of breeding materials with diverse grain size and shape in japonica rice. Korean J Breed Sci. 49(4) : 369-389.
Park, H. S., M. K. Baek, J. K. Nam, W. C. Shin, G. M. Lee, S. G. Park, C. M. Lee, C. S. Kim, and Y. C. Cho. 2018. Development and characterization of japonica rice line with long and spindle-shaped grain. Kor J Breed Sci. 50(2) : 116-130.
Qi, P., Y.-S. Lin, X.-J. Song, J.-B. Shen, W. Huang, J.-X. Shan, M.-Z. Zhu, L. Jiang, J.-P. Gao et al. 2012. The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell research. 22(12) : 1666-1680.
RDA. 2012. Standard of analysis and survey for agricultural research. Suwon. Korea.
Revelle, W. R. 2017. psych: Procedures for Personality and Psychological Research. Software.
Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi, and M. Yano. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nature genetics. 40(8) : 1023-1028.
Song, X.-J., W. Huang, M. Shi, M.-Z. Zhu, and H.-X. Lin. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature genetics. 39(5) : 623-630.
Tang, Y., M. Horikoshi, and W. Li. 2016. ggfortify: unified interface to visualize statistical results of popular R packages. The R Journal. 8(2) : 478-489.
Wang, S., S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang et al. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature genetics. 47(8) : 949-954.
Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong et al. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature genetics. 44(8) : 950.
Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng et al. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell research. 18(12) : 1199.
Wu, K., X. Xu, N. Zhong, H. Huang, J. Yu, Y. Ye, Y. Wu, and X. Fu. 2018. The rational design of multiple molecular module- based assemblies for simultaneously improving rice yield and grain quality. J Genomics Genet. 45 : 337-341.
Yan, S., G. Zou, S. Li, H. Wang, H. Liu, G. Zhai, P. Guo, H. Song, C. Yan et al. 2011. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor Appl Genet. 123(7) : 1173-1181.
Zhang, X., J. Wang, J. Huang, H. Lan, C. Wang, C. Yin, Y. Wu, H. Tang, Q. Qian et al. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences. 109(52) : 21534-21539.
Zhong, H., C. Liu, W. Kong, Y. Zhang, G. Zhao, T. Sun, and Y. Li. 2019. Effect of multi-allele combination on rice grain size based on prediction of regression equation model. Mol Genet Genomic. 295 : 465-474.
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 65
  • No :3
  • Pages :199-213
  • Received Date :2020. 05. 23
  • Revised Date :2020. 06. 29
  • Accepted Date : 2020. 07. 06