• Research Article

    Multivariate Analysis of Variation of Growth and Quality Characteristics in Colored Rice Germplasm

    유색미 도입 유전자원의 생육 및 품질특성 변이 다변량 분석

    Jong-Hyun Park, Ji-Yoon Lee, Jae-Buhm Chun, Oh-Jong You, and Eun-Ho Son

    박종현, 이지윤, 전재범, 유오종, 손은호

    The aim of this study was to evaluate the variation of growth and quality characteristics in colored rice from 178 accessions and ... + READ MORE
    The aim of this study was to evaluate the variation of growth and quality characteristics in colored rice from 178 accessions and to develop useful, basic rice breeding data by classifying these germplasm characteristics via principal component (PC) analysis. The coefficient of variation of the 178colored rice accessions were the highest for panicle length (PL) and protein contents, followed by length-width ratio (LWR), 1000-grain weight (TGW), culm length (CL), and amylose contents, whereas the lowest was for the number of panicles per hill (NP), which is a yield component. The results from the PC analysis exhibited eigenvalues and contributions respective to each PC as follows: PC1, 2.06 and 29.49%; PC2, 1.31 and 18.75%; PC3, 1.21 and 17.36%; PC4, 1.01 and 14.38%. The eigenvalues of four PCs were over 1.0, and their cumulative contributions were 79.98%, which completes the necessary condition for evaluation of the 178 colored rice accessions. Cluster analysis showed cluster I as the largest, which included 79 accessions, while clusters II, III, IV, V, VI, and VII comprised 46, 19, 13, 4, 8, and 9 accessions, respectively. Moreover, dark brown accessions were dispersed in clusters I and II, and many resources of purple seed coat color were found in clusters V, VI, and VII. Particularly, cluster V had resources of only black and purple seed coat colors. Resources of cluster VII were found to have a relatively small average CL, PL, and LWR; notably, cluster V had the smallest average TGW, and cluster IV the lowest NP but the highest TGW. Finally, considering the yield potential, growth characteristics, heading stage, and color during breeding of colored rice, we obtained the following conclusions: cluster VII is suitable for breeding of colored rice; cross breeding among clusters I, II, and VII has a high yield potential; and it is possible to produce a superior color by cross breeding plants from cluster V and VI. - COLLAPSE
    June 2018