All Issue

2018 Vol.63, Issue 1 Preview Page
March 2018. pp. 25-34
Abstract
This study was conducted to investigate the germination and proteome profile characteristics of wheat seeds treated under various concentrations of abscisic acid (ABA). After-ripening, the seeds of three wheat cultivars (Baegjoong, Keumkang, and Uri) showing different levels of dormancy were used. Germination index and germination rate of the cultivars was higher than 0.95% and 98%, respectively, and these were not significantly different under 0, 10, 30, and 50 μM ABA at 7 d after germination. However, the growth of the shoot and radicle was significantly inhibited at 10, 30, and 50 μM ABA compared to that at 0 μM ABA. Mean ABA content of the embryos of seeds germinated at 0 and 50 μM ABA for 7 d was 0.8 and 269.0 ngmg-1 DW, respectively. Proteins extracted from embryos germinated for 4 d were analyzed by two-dimensional gel electrophoresis, and proteins showing a difference of 1.5-fold or greater in their spot volume relative to that of 0 μM ABA were identified. The expression of four protein spots increased at 50 μM ABA and two protein spots were detected only at 50 μM ABA; these six proteins were all identified as globulin types. Conversely, the expression of three protein spots decreased at 50 μM ABA and were identified as cytosolic glutamine sysnthetase, isocitrate dehydrogenase, and S-adenosylmethionine synthetase 2. In conclusion, ABA did not inhibit the germination rate regardless of pre-harvest sprouting characteristics of the cultivars. However, the growth of the shoot and radicle was significantly inhibited by ABA, most likely through the down regulation of glutamine, methyl group donor, and polyamines biosynthesis, among others, while accompanied by globulin accumulation in the embryos.


References
  1. Bove, J., P. Lucas, B. Godin, L. Ogé, M. Jullien, and P. Grappin. 2005. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol. Biol. 57(4) : 593-612.10.1007/s11103-005-0953-8
  2. Chen, Y., T. Zou, S. and McCormick. 2016. S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol. doi: org/10.1104/pp.16.00774.
  3. Da Silva, E. A. A., P. E. Toorop, A. A. M. Van Lammeren, and H. W. M. Hilhorst. 2008. ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica ‘Rubi’) seed germination. Ann. Bot.-London 102(3) : 425-433.10.1093/aob/mcn11218617534PMC2701795
  4. Gálvez, S., M. Lancien, and M. Hodges. 1999. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci. 4(12) : 484-490.10.1016/S1360-1385(99)01500-9
  5. Glevarec, G., S. Bouton, E. Jaspard, M.-T. Riou, J.-B. Cliquet, A. Suzuki, and A. M. Limami. 2004. Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219(2) : 286-297.10.1007/s00425-004-1214-914991406
  6. Gómez-Cadenas, A., R. Zentella, M. K. Walker-Simmons, and T.-H. D. Ho. 2001. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell 13(3) : 667-679.10.1105/tpc.13.3.66710.2307/387141411251104PMC135510
  7. Guan, M., I. S. Moller, and J. K. Schjoerring. 2015. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. J. Exp. Bot. 66(1) : 203-212.10.1093/jxb/eru41125316065PMC4265158
  8. He, M., C. Zhu, K. Dong, T. Zhang, Z. Cheng, J. Li, and Y. Yan. 2015. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol. 15 : 97.10.1186/s12870-015-0471-z25888100PMC4407426
  9. Hihorst H. W. M. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5 : 61-73.
  10. Hirel, B., A. Martin, T. Tercé‐Laforgue, M. B. Gonzalez‐Moro, and J. M. Estavillo. 2005. Physiology of maize I: a comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 124(2) : 167-177.10.1111/j.1399-3054.2005.00510.x
  11. Kacem, N. S., S. Mauro, Y. Muhovski, F. Delporte, J. Renaut, A. Djekoun, and B. Watillon. 2016. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol. Biol. Rep. 43(9) : 897-909.10.1007/s11033-016-4028-5
  12. Kim, D. W., H. S. Kim, H. H. Park, J. J. Hwang, S. L. Kim, J. E. Lee, G. H. Jung, T. Y. Hwang, J. T. Kim, S. J. Kim, R. Randeep, and Y. U. Kwon. 2012. Characterization of grain amino acid composition and proteome profile of a high-lysine barley mutant line M98. Korean J. Crop Sci. 57(2) : 171-181.10.7740/kjcs.2012.57.2.171
  13. Kim, K.-H., C.-S. Kang, J.-C. Park, S.-H. Shin, J.-N. Hyun, and C. S. Park. 2012. Evaluation of pre-harvest sprouting in Korean wheat cultivar. Kor. J. Breed. Sci. 44(4) : 526-537.10.9787/KJBS.2012.44.4.526
  14. Kim, S. T., S. Y. Kang, W. Wang, S. G. Kim, D. H. Hwang, and K. Y. Kang. 2008. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8(17) : 3577-3587.10.1002/pmic.20080018318686304
  15. Koziol, A. G., E. Loit, M. McNulty, A. J. MacFarlane, F. W. Scott, and I. Altosaar. 2012. Seed storage proteins of the globulin family are cleaved post-translationally in wheat embryos. BMC Res. Notes 5 : 385.10.1186/1756-0500-5-38522838494PMC3434096
  16. Kucera, B., M. A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15(4) : 281-307.10.1079/SSR2005218
  17. Liu, A., F. Gao, Y. Kanno, M. Jordan, Y. Kamiya, M. Seo, and B. Ayele. 2013. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One. 8 : 1-18.10.1371/journal.pone.0056570
  18. Liu, S. J., H. H. Xu, W. Q. Wang, N. Li, W. P. Wang, I. M. Moller, and S. Q. Song. 2015. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol. Plant. 154(1) : 142-161.10.1111/ppl.1229225270993
  19. Mares, D. 1998. The seed coat and dormancy in wheat grains. In: WeiprtD (ed) Eighth International Symposium on Pre- harvest Sprouting in Cereals. Association of Cereal Research Federal Centre for Cereal Potato and Lipid Research. Detmold, Germany. pp: 77-81.
  20. Martinez-Lopez, N., M. Varela-Rey, U. Ariz, N. Embade, M. Vazquez-Chantada, D. Fernandez-Ramos, L. Gomez-Santos, S. C. Lu, J. M. Mato, and M.L. Martinez-Chantar. 2008. S- Adenosylmethionine and proliferation: new pathways, new targets. Biochem. Soc. T. 36 : 848-852.10.1042/BST036084818793149
  21. Müller, K., S. Tintelnot, and G. Leubner-Metzger. 2006. Endosperm- limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 47(7) : 864-877.10.1093/pcp/pcj05916705010
  22. Nyachiro, J. M., F. R. Clarke, R. M. DePauw, R. E. Knox, and K. C. Armstrong. 2002. The effects of cis-trans ABA on embryo germination and seed dormancy in wheat. Euphytica 126(1) : 129-133.10.1023/A:101968402508210.1023/A:1019694800066
  23. Pawlowski, T. A. 2007. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7(13) : 2246-2257.10.1002/pmic.20060091217533642
  24. Reddy, L., R. Metzger, and T. Ching. 1985. Effect of temperature on seed dormancy of wheat. Crop Sci. 25(3) : 455-458.10.2135/cropsci1985.0011183X002500030007x
  25. Roje S. 2006. S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67: 1686-1698.10.1016/j.phytochem.2006.04.01916766004
  26. Saeedipour, S. 2013. Relationship of Grain Yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. PNAS India B. 83(3) : 311- 315.10.1007/s40011-012-0147-5
  27. Schlereth, A., C. Becker, C. Horstmann, J. Tiedemann, and K. Muntz. 2000. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51(349) : 1423-1433.10.1093/jexbot/51.349.142310.1093/jxb/51.349.1423
  28. Sharma, S., H. Dhaliwal, D. Multani, and S. Bains. 1994. Inheritance of preharvest sprouting tolerance in Triticum aestivum and its transfer to an amber-grained cultivar. J. Heredity 85(4) : 312-314.10.1093/oxfordjournals.jhered.a111466
  29. Shen, B., C. Li, and M. C. Tarczynski. 2002. High free- methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J. 29 : 371-380.10.1046/j.1365-313X.2001.01135.x10.1046/j.1365-313X.2002.01221.x11844113
  30. Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen, and M. Mann. 2007. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1(6) : 2856-2860.10.1038/nprot.2006.46817406544
  31. Shewry P. R. 2009. Wheat. J. Exp. Bot. 60(6) : 1537-1553.10.1093/jxb/erp05819386614
  32. Simpson G. M. 1990. Seed Dormancy in Grasses. Cambridge University Press. Cambridge. UK.10.1017/CBO9780511721816
  33. Tanaka, N., H. Konishi, M. M. K. Khan, and S. Komatsu. 2004. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol. Genet. Genomics 270(6) : 485-496.10.1007/s00438-003-0929-9
  34. Walker-Simmons, M. 1987. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. Bioch. 84(1) : 61-66.10.1104/pp.84.1.61
  35. Westermeier, R., T. Naven, and H.-R. Hopker. 2008. Proteomics in Practice : A Guide to Successful Experimental Design, 2nd, Completely Revised Edition. Wiley-VCH, Germany. pp: 309-356.10.1002/9783527622290
  36. Wolukau, J. N., S. L. Zhang, G. H. Xu, and D. Chen. 2004. The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci. Hort. 99 : 289-299.10.1016/S0304-4238(03)00112-2
  37. Yang, Weibing, T. Cai, Y. Li, J. Guo, D. Peng, D. Yang, Y. Yin, and Z. Wang. 2013. Effects of exogenous abscisic acid and gibberellic acid on filling process and nitrogen metabolism characteristics in wheat grains. Aust. J. Crop. Sci. 7(1) : 58-65.
  38. Yu, H., L. L. Wang, X. Y. Chen, Y. Yang, X. R. Yu, Z. Wang, and F. Xiong. 2016. Effects of exogenous gibberellic acid and abscisic acid on germination, amylases, and endosperm structure of germinating wheat seeds. Seed Sci. Technol. 44(1) : 64-76.10.15258/sst.2016.44.1.09
  39. Yu, Y. L., S. M. Zhen, S. Wang, Y. P. Wang, H. Cao, Y. Z. Zhang, J. R. Li, and Y. M. Yan. 2016. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination. BMC Genomics 17(1) : 97.10.1186/s12864-016-2416-926846093PMC4743158
  40. Zhang, X., S. Liu, and T. Takano. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 68(1-2) : 131-143.10.1007/s11103-008-9357-x18523728
Information