All Issue

2019 Vol.64, Issue 3 Preview Page

Original Research Article

30 September 2019. pp. 246-268
Abstract
References
1
Hofstrand, D. 2011. Climate Change Beginning to Impact Global Crop Production. AgMRC Renewable Energy & Climate Change Newsletter. Available online: https://www.agmrc.org/ renewable-energy/climate-change-and-agriculture/climate-change-beginning-to-impact-global-crop-production (accessed on September 2011).
2
Avila, A. M. H., J. R. B. Farias, H. S. Pinto, and F. G. Pilau. 2013. Climatic restrictions for maximizing soybean yields. in: Board, J. E. (Ed.), A comprehensive survey of international soybean research-genetics, physiology, agronomy and nitrogen relationships. New York, NY, pp. 367-375.
3
Berlato, M. A. 1981. Bioclimatologia da soja. in: Miyasaka, S. and J. C. Medina. (Eds.), A soja no Brasil. Campinas: ITAL, Campinas, Brasil, pp. 175-184.
4
Bernard, R. L. 1971. Two major genes for time of flowering and maturity in soybeans. Crop Sci. 11 : 242-244.
10.2135/cropsci1971.0011183X001100020022x
5
Bernard, R. L. 1972. Two genes affecting stem termination in soybeans. Crop Sci. 12, 235-239.
10.2135/cropsci1972.0011183X001200020028x
6
Bisen, A., D. Khare, P. Nair, and N. Tripathi, 2015. SSR analysis of 38 genotypes of soybean (Glycine Max (L.) Merr.) genetic diversity in India. Physiol. Mol. Biol. Plants 21 : 109-115.
10.1007/s12298-014-0269-825648255PMC4312325
7
Bonato, E. R. and N. A. Vello. 1999. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 22 : 229-232.
10.1590/S1415-47571999000200016
8
Buzzell, R. I. 1971. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can. J. Gene Cytol. 13 : 703-707.
10.1139/g71-100
9
Buzzell, R. I. and H. D. Voldeng. 1980. Inheritance of insensitivity to long daylength. Soybean Genet. Newsl. 7 : 26-29.
10
Chen, G. H. and P. Wiatrak. 2010. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agron. J. 102 : 1731-1737.
10.2134/agronj2010.0219
11
Cober, E. R., S. J. Molnar, M. Charette, and H. D. Voldeng. 2010. A new locus for early maturity in soybean. Crop Sci. 50 : 524-527.
10.2135/cropsci2009.04.0174
12
Cober, E. R. and H. D. Voldeng. 2001. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 41 : 698-701.
10.2135/cropsci2001.413698x
13
Cox, W. J. and G. D. Jolliff. 1986. Growth and yield of sunflower and soybean under soil water deficits. Agron. J. 78 : 226-230.
10.2134/agronj1986.00021962007800020002x
14
Downs, J. R. and J. F. Thomas. 1990. Morphology and reproductive development of soybean under artificial conditions. Biotronics. 19 : 19-32.
15
Fageria, N. K. 1989. Solos tropicais e aspectos fisiológicos das culturas. Brasília: Embrapa-DPU, Brasília, Brasil.
16
Frederick, J. R., C. R. Camp, and P. J. Bauer. 2001. Drought- stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 41 : 759-763.
10.2135/cropsci2001.413759x
17
Fukui, J. and M. Arai. 1951. Ecological studies on Japanese soy-bean varieties. I. Classification of soy-bean varieties on the basis of the days from germination to blooming and from blooming to ripening with special reference to their geographical differentiation. Japan J. Breed. 1 : 27-39.
10.1270/jsbbs1951.1.27
18
Gai, J. Y., Y. S. Wang, M. C. Zhang, J. A. Wang, and R. Z. Chang. 2001. Studies on the classification of maturity groups of soybeans in China. Acta Agron. Sin. 27 : 286- 292.
19
Garner, W.W. and H.A. Allard. 1930. Photoperiodic response of soybeans in relation to temperature and other environmental factors. J. Agric. Res. 41 : 719-735.
20
Hadley, P., E. H. Roberts, R. J. Summerfield, and F. R. Minchin. 1984. Effects of temperature and photoperiod on flowering in Soya bean [Glycine max (L.) Merrill]: a quantitative model. Ann. Bot. 53 : 669-681.
10.1093/oxfordjournals.aob.a086732
21
Hartwig, E. E. 1973. Varietal development. in: Soybeans: Improvement, Production and Uses, Caldwell, B.E. Ed., Madison, WI, pp. 187-207.
22
Heatherly, L. G. and J. R. Smith. 2004. Effect of soybean stem growth habit on height and node number after beginning bloom in the midsouthern USA. Crop Sci. 44 : 1855-1858.
10.2135/cropsci2004.1855
23
Hipparagi, Y., R. Singh, D. R. Choudhury, and V. Gupta. 2017. Genetic diversity and population structure analysis of Kala bhat (Glycine max (L.) Merrill) genotypes using SSR markers. Hereditas. 154 : 9.
10.1186/s41065-017-0030-828461811PMC5408476
24
Hofstrand, D. 2011. Climate Change Beginning to Impact Global Crop Production. AgMRC Renewable Energy & Climate Change Newsletter. Available online: https://www.agmrc. org/renewable-energy/climate-change-and-agriculture/climate-change-beginning-to-impact-global-crop-production (accessed on September 2011).
25
Hollinger, S. E. and S. A. Changnon. 1993. Response of corn and soybean yields to precipitation augmentation, and implications for weather modification. in: Illinois Bulletin 73, Illinois State Water Survey, Illinois.
26
Hu, Z., D. Zhang, G. Zhang, G. Kan, D. Hong, and D. Yu. 2014. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breed Sci. 63 : 441-449.
10.1270/jsbbs.63.44124757383PMC3949580
27
Kantolic, A. G. and G. A. Slafer. 2007. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. Bot. 99 : 925-933.
10.1093/aob/mcm03317452381PMC2802919
28
Korte, L. L., J. H. Williams, J. E. Specht, and R. C. Sorensen. 1983. Irrigation of Soybean Genotypes During Reproductive Ontogeny. I: Yield Component Responses. Crop Sci. 23 : 528-533.
10.2135/cropsci1983.0011183X002300030020x
29
Kumar, A., V. Pandey, A. M. Shekh, and M. Kumar. 2008. Growth and yield response of soybean (Glycine max L.) in relation to temperature, photoperiod and sunshine duration at Anand, Gujarat, India. Am. Eurasian J. Agron. 1 : 45-50.
30
Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter, D. A. Ashley, R. S. Hussey, W. A. Parrott, and H. R. Boerma. 1996. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 36 : 728-735.
10.2135/cropsci1996.0011183X003600030035x
31
Liu, X., J. A. Wu, H. Ren, Y. Qi, C. Li, J. Cao, X. Zhang, Z. Zhang, Z. Cai, and J. Gai. 2017. Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breed Sci. 67 : 221-232.
10.1270/jsbbs.1616728744175PMC5515309
32
Mason, A. S. 2015. SSR genotyping. Methods Mol. Biol. 1245 : 77-89.
10.1007/978-1-4939-1966-6_625373750
33
McBlain, B. A. and R. L. Bernard. 1987. A new gene affecting the time of flowering and maturity in soybeans. J. Hered. 78 : 160-162.
10.1093/oxfordjournals.jhered.a110349
34
Meckel, L., D. B. Egli, R. E. Phillips, D. Radcliffe, and J. E. Leggett. 1984. Effect of moisture stress on seed growth in soybean. Agron. J. 76 : 647-650.
10.2134/agronj1984.00021962007600040033x
35
Pandey, P. K., W. A. T. Herrera, and J. W. Pendleton. 1984. Drought responses of grain legumes under irrigation gradient: U. Plant water status and canopy temperature. Agron. J. 76 : 553-557.
10.2134/agronj1984.00021962007600040010x
36
Park, M. R., M. J. Seo, Y. Y. Lee, and C. H. Park. 2016. Selection of Useful Germplasm Based on the Variation Analysis of Growth and Seed Quality of Soybean Germplasms Grown at Two Different Latitudes. Plant Breed Biotech. 4 : 462-474.
10.9787/PBB.2016.4.4.462
37
Penariol, A. 2000. Soja: Cultivares no lugar certo. Informações Agronômicas. 90 : 13.
38
Rodrigues, J., F. Miranda, N. Piovesan, A. Ferreira, M. Ferreira, C. Cruz, E. Barros, and M. Alves. 2016. QTL mapping for yield components and agronomic traits in a Brazilian soybean population. Crop Breed Appl. Biotechnol. 16 : 265-273.
10.1590/1984-70332016v16n4a41
39
Rüdelsheim, P. L. J. and G. Smets. 2014. Baseline information on agricultural practices in the EU Soybean (Glycine max (L.) Merr.). Available online: http://www.europabio.org/ baseline-information-agricultural-practices-eu-soybean-glycine-max-l-merr (accessed on 8 May 2014).
40
Rural Development Administration (RDA). 2012. Agricultural Science Technology Standards for Investigation of Research (Korean).
41
Saito, M. and K. Hashimoto. 1980. Classification, distribution and cultivation characterizations of varieties. in: Soybean ecology and cultivation technology, Saito, M. and T. Okubo. Eds., Rural Culture Association Japan, Tokyo, Japan, pp. 37-62.
42
Saryoko, A., K. Homma, I. Lubis, and T. Shiraiwa. 2017. Plant development and yield components under a tropical environment in soybean cultivars with temperate and tropical origins. Plant Prod. Sci. 20 : 375-383.
10.1080/1343943X.2017.1356203
43
Sato, K. 1976. The growth responses of soybean plant to photoperiod and temperature. I. Response in vegetative growth. Proc. Crop Sci. Soc. Japan 45 : 443-449.
10.1626/jcs.45.443
44
Sebastian, S. A., L. G. Streit, P. A. Stephens, J. A. Thompson, B. R. Hedges, M. A. Fabrizius, J. F. Soper, D. H. Schmidt, R. L. Kallem, M. A. Hinds, L. Feng, and J. A. Hoeck. 2010. Context-specific marker-assisted selection for improved grain yield in elite soybean populations. Crop Sci. 50 : 1196-1206.
10.2135/cropsci2009.02.0078
45
Specht, J. E., K. Chase, M. Macrander, G. L. Graef, J. Chung, J. P. Markwell, M. Germann, J. H. Orf, and K. G. Lark. 2001. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci. 41 : 493-509.
10.2135/cropsci2001.412493x
46
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 : 1596-1599.
10.1093/molbev/msm09217488738
47
Thompson, J. A., R. L. Bernard, and R. L. Nelson. 1997. A third allele at the soybean dt1 locus. Crop Sci. 37 : 757- 762.
10.2135/cropsci1997.0011183X003700030011x
48
Thompson, L. M. 1969. Weather and technology in the production of corn in the U.S. Corn Belt. Agron. J. 61 : 453-456.
10.2134/agronj1969.00021962006100030037x
49
Van Schaik, P. H. and A. H. Probst. 1958. Effects of some environmental factors on flower production and reproductive efficiency in soybeans. Agron. J. 50 : 192-197.
10.2134/agronj1958.00021962005000040007x
50
Watanabe, S., K. Harada, and J. Abe. 2012. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 61 : 531-543.
10.1270/jsbbs.61.53123136492PMC3406791
51
Watanabe, S., R. Hideshima, Z. Xia, Y. Tsubokura, S. Sato, Y. Nakamoto, N. Yamanaka, R. Takahashi, M. Ishimoto, T. Anai, S. Tabata, and K. Harada. 2009. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182 : 1251-1262.
10.1534/genetics.108.09877219474204PMC2728863
52
Woodworth, C. M. 1932. Genetics and breeding in the improvement of the soybean. Illinois Agr. Exp. Sta. Bull. 384 : 297-404.
53
Xia, Z. J., S. Watanabe, T. Yamada, S. Tsubokura, H. Nakashima, H. Zhai, T. Anai, S. Sato, T. Yamazaki, S. Lü, H. Wu, S. Tabata, and K. Harada. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1, which regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA 109 : E2155-2164.
10.1073/pnas.111798210922619331PMC3420212
54
Xu, M., Z. Xu, B. Liu, F. Kong, Y. Tsubokura, S. Watanabe, Z. Xia, K. Harada, A. Kanazawa, T. Yamada, and J. Abe. 2013. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 13 : 91.
10.1186/1471-2229-13-9123799885PMC3698206
55
Yamada, T., M. Hajika, N. Yamada, K. Hirata, A. Okabe, N. Oki, K. Takahashi, K. Seki, K. Okano, Y. Fujita, A. Kaga, T. Shimizu, T. Sayama, and M. Ishimoto. 2012. Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei. Breed Sci. 61 : 653-660.
10.1270/jsbbs.61.65323136505PMC3406789
56
Zhai, H., S. Lu, Y. Wang, X. Chen, H. Ren, J. Yang, W. Cheng, C. Zong, H. Gu, H. Qiu, H. Wu, X. Zhang, T. Cui, and Z. Xia. 2014. Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One 9 : e97636.
10.1371/journal.pone.009763624830458PMC4022622
57
Zhang, G. W., S. C. Xu, W. H. Mao, Q. Z. Hu, and Y. M. Gong. 2013. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J. Zhejiang Univ. Sci. B. 14 : 279-288.
10.1631/jzus.B120024323549845PMC3625524
58
Zhang, W. K., Y. J. Wang, G. Z. Luo, J. S. Zhang, C. Y. He, X. L. Wu, J. Y. Gai, and S. Y. Chen. 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 108 : 1131-1139.
10.1007/s00122-003-1527-215067400
59
Zhang, X., W. Wang, N. Guo, Y. Zhang, Y. Bu, J. Zhao, and H. Xing. 2018. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19 : 226.
10.1186/s12864-018-4582-429587637PMC5870336
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 64
  • No :3
  • Pages :246-268
  • Received Date : 2019-07-16
  • Revised Date : 2019-08-31
  • Accepted Date : 2019-09-10