All Issue

2018 Vol.63, Issue 1
March 2018. pp. 1-7
Information on the patterns of genetic diversity and population structure is essential for the rational use and efficient management of germplasms; accurate information aids in monitoring germplasms, and can also be used to predict potential genetic gains. In this study, we assessed genetic diversity, focusing on Korean rice accessions for theand their sustainable conserved diversity. Using DNA profiling with 12 simple sequence repeat (SSR) markers, we detected a total of 333 alleles among 2,016 accessions. The number of alleles ranged from 21 to 53, with an average of 27.8. Average polymorphism information content was 0.797, with the lowest being 0.667 and the highest 0.940. CA cluster analysis and the model-based population structure revealed two main groups that could be subdivided into five subgroups. Analysis of the molecular variance study based on the SSR profile data showed 5% variance among the profiles, whereas we recorded 93% variance among individuals and 2% variance within individuals. Specifically, the utilized diversity for of the breeding program is restricted in that cultivars were located in limited clades. These results revealed that preserving the diversity of Korean landraces could be useful sources for breeding new rice cultivars, and cwould be the basis for the sustainable conservation and utilization of a Korean rice germplasm.

  1. Babu, B. K., V. Meena, V. Agarwal, and P. K. Agrawal. 2014. Population structure and genetic diversity analysis of Indian and exotic rice (Oryza sativa L.) accessions using SSR markers. Mol. Biol. Rep. 41.10.1007/s11033-014-3304-5
  2. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14 : 2611-2620.10.1111/j.1365-294X.2005.02553.x15969739
  3. Garris, A. J., T. H. Tai, J. Coburn, S. Kresovich, and S. McCouch. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169 : 1631-1638.10.1534/genetics.104.03564215654106PMC1449546
  4. Gepts, P. 2006 Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci. 46 : 2278-2292.10.2135/cropsci2006.03.0169gas
  5. Govindaraj, M., M. Vetriventhan, and M. Srinivasan. 2015. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genet. Res. Int. 2015 : 14.10.1155/2015/43148725874132PMC4383386
  6. Hassan, M. M., A. K. M. Shamsuddin, M. M. Islam, K. Khatun, and J. Halder. 2012. Analysis of Genetic Diversity and Population Structure of Some Bangladeshi Rice Landraces and HYV. J. Sci. Res. 4 : 757-767.10.3329/jsr.v4i3.10416
  7. Kashiani, P., G. Saleh, J. M. Panandam, N. A. P. Abdullah, and A. Selamat. 2012. Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica. 57 : 154-163.
  8. Kim, O. G., K. J. Sa, J. R. Lee, and J. K. Lee. 2017. Genetic analysis of maize germplasm in the Korean Genebank and association with agronomic traits and simple sequence repeat markers. Genes Genom. 39 : 843-853.10.1007/s13258-017-0547-2
  9. Lee, K. J., J.-R. Lee, G.-A. Lee, H. S. Lee, S. I. Kwon, Y.-G. Cho, Y.-H. Cho, K.-H. Ma, S.-Y. Lee, and J.-W. Chung. 2015. Genetic Diversity Among Korean Rice Landraces (Oryza sativa L.) Based on Characters and SSR Markers. Plant Breed. Biotechnol. 3 : 216-225.10.9787/PBB.2015.3.3.216
  10. Legesse, B. W., A. A. Myburg, K. V. Pixley, and A. M. Botha. 2007. Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144 : 10-17.10.1111/j.2006.0018-0661.01921.x17567435
  11. Li, F. P., Y. S. Lee, S. W. Kwon, G. Li, and Y. J. Park. 2014. Analysis of genetic diversity and trait correlations among Korean landrace rice (Oryza sativa L.). Genet. Mol. Res. 13 : 6316-6331.10.4238/2014.April.14.1224782213
  12. Litt, M. and J. A. Luty. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44 : 397-401.2563634PMC1715430
  13. Liu, K. J. and S. V. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21 : 2128-2129.10.1093/bioinformatics/bti28215705655
  14. Nachimuthu, V. V., R. Muthurajan, S. Duraialaguraja, R. Sivakami, B. A. Pandian, and G. Ponniah. 2015. Analysis of population structure and genetic diversity in rice germplasm using SSR Markers: An initiative towards association mapping of agronomic traits in Oryza sativa. Rice 8 : 30.10.1186/s12284-015-0062-526407693PMC4583558
  15. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155 : 945-959.10835412PMC1461096
  16. Pusadee, T., S. Jamjod, Y.-C. Chiang, B. Rerkasem, and B. A. Schaal. 2009. Genetic structure and isolation by distance in a landrace of Thai rice. PNAS 106 : 13880-13885.10.1073/pnas.090672010619651617PMC2728989
  17. Rutger, J. N., J. F. Robinson, and R. H. Dilday. 1999. Proceedings of the International Symposium on Rice Germplasm Evaluation and Enhancement. In J.N. Rutger, J.F. Robinson, and R.H. Dilday Eds. August 30-September 2, 1998, Stuttgart, Arkansas.
  18. Saini, N., N. Jain, S. Jain, and R. K. Jain. 2004. Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP, ISSR and SSR markers. Euphytica 140 : 133-146.10.1007/s10681-004-2510-y
  19. Singh, N., D. R. Choudhury, G. Tiwari, A. K. Singh, S. Kumar, K. Srinivasan, R. K. Tyagi, A. D. Sharma, N. K. Singh, and R. Singh. 2016. Genetic diversity trend in Indian rice varieties: an analysis using SSR markers. BMC Genet. 17 : 127.10.1186/s12863-016-0437-727597653PMC5011800
  20. Tu, M., B. R. Lu, Y. Zhu, and Y. Wang. 2007. Abundant within-varietal genetic diversity in rice germplasm from Yunnan Province of China revealed by SSR fingerprints. Biochem. Genet. 45 : 789-801.10.1007/s10528-007-9118-617929162
  21. van de Wouw, M., C. Kik, T. van Hintum, R. van Treuren, and B. Visser. 2010. Genetic erosion in crops: concept, research results and challenges. Plant Genet. Resour. 8 : 1-15.10.1017/S1479262109990062
  22. van Heerwaarden, J., J. Hellin, R. F. Visser, and F. A. van Eeuwijk. 2009. Estimating maize genetic erosion in modernized smallholder agriculture. Theoretical and Applied Genetics 119 : 875-888.10.1007/s00122-009-1096-019578830PMC2729414
  23. Wang, R., Y. Yu, J. Zhao, Y. Shi, Y. Song, T. Wang, and Y. Li. 2008. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor. Appl. Genet. 117 : 1141-1153.10.1007/s00122-008-0852-x18696041
  24. Wang, X.-Q., S.-W. Kwon, and Y.-J. Park. 2013. Evaluation of genetic diversity and linkage disequilibrium in Korean-bred rice varieties using SSR markers. Electron. J. Biotechnol. 16
  25. Weber, J. L. and P. E. May. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44 : 388-396.2916582PMC1715443
  26. Xie, C., M. Warburton, M. Li, X. Li, M. Xiao, Z. Hao, Q. Zhao, and S. Zhang. 2008. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol. Breed. 21 : 407-418.10.1007/s11032-007-9140-8
  27. Zhao, W., J.-W. Chung, K.-H. Ma, T.-S. Kim, S.-M. Kim, D.-I. Shin, C.-H. Kim, H.-M. Koo, and Y.-J. Park. 2009. Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Gene. Genom. 31 : 283-292.