All Issue

2020 Vol.65, Issue 4 Preview Page
December 2020. pp. 377-385
Abstract
References
1
Amanullah, K., B. Marwat, P. Shah, N. Maula, and S. Arifullah. 2009. Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak. J. Bot. 41 : 761-768.
2
Ashourloo, D., M. R. Mobasheri, and A. Huete. 2014. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote. Sens. 6 : 5107-5123. 10.3390/rs6065107
3
Behmann, J., J. Steinrücken, and Lutz. Plümer, P. 2014. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 93 : 98-111. 10.1016/j.isprsjprs.2014.03.016
4
Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB Imaging. Remote. Sens. 6 : 10395-10412. 10.3390/rs61110395
5
Birth, G. S. and G. R. McVey. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. J. Agron. 60 : 640-643. 10.2134/agronj1968.00021962006000060016x
6
Blackburn, G. A. 1999. Relationship between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote. Sens. Environ. 70 : 224-237. 10.1016/S0034-4257(99)00048-6
7
Calderón, R., J. A. Navas-Cortés, C. Lucena, and P. J. Zarco-Tejada. 2013. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote. Sens. Environ. 139 : 231-245. 10.1016/j.rse.2013.07.031
8
Cao, X., Y. Luo, Y. Zhou, J. Fan, X. Xu, J. S. West, X. Xiayu, and D. Cheng. 2015. Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS One. 10 : 1-14. 10.1371/journal.pone.012146225815468PMC4376796
9
Carter, G. A. 1993. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80 : 239-243. 10.1002/j.1537-2197.1993.tb13796.x
10
Cho, S. W., C. S. Kang, T. G. Kang, K. M. Cho, and C. S. Park. 2018. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J. Integr. Agric. 17 : 982-993. 10.1016/S2095-3119(18)61920-3
11
Darvishzadeh, R., A. Skidmore, C. Atzberger, and S. V. Wieren. 2008. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth. OBS. 10 : 358-373. 10.1016/j.jag.2008.02.005
12
Datt, B. 1999. A New reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J. Plant. Physiol. 154 : 30-36. 10.1016/S0176-1617(99)80314-9
13
FAO. 2020. Food outlook - Biannual report on global food markets. pp. 11-16.
14
Feng, W., X. Yao, Y. Zhu, Y. C. Tian, and W. X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28 : 394-404. 10.1016/j.eja.2007.11.005
15
Filella, I., L. Serrano, J. Serra, and J. Penuelas. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop. Sci. 35 : 1400-1405. 10.2135/cropsci1995.0011183X003500050023x
16
Fritschi, F.B. and J. D. Ray. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 45 : 92-98. 10.1007/s11099-007-0014-4
17
Gamon, J. A., J. Peñuelas, and C. B. Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 41 : 35-44. 10.1016/0034-4257(92)90059-S
18
Gitelson, A. and M. N. Merzlyak. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. J. Plant. Physiol. 143 : 286-292. 10.1016/S0176-1617(11)81633-0
19
Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote. Sens. Environ. 58 : 289-298. 10.1016/S0034-4257(96)00072-7
20
Gitelson, A. A. and M. N. Merzlyak. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space. Res. 22 : 689-692. 10.1016/S0273-1177(97)01133-2
21
Gitelson, A. A., Y. Gritz, and M. N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 160 : 271-282. 10.1078/0176-1617-0088712749084
22
Goetz, A. F. H. 2009. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote. Sens. Environ. 113 : S5-S16. 10.1016/j.rse.2007.12.014
23
Han, L., G. Yang, H. Dai, B. Xu, H. Yang, H. Feng, Z. Li, and X. Yang. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 15 : 10. 10.1186/s13007-019-0394-z30740136PMC6360736
24
Ivushkin, K., H. Bartholomeus, A. K. Bregt, A. Pulatov, H. D. Franceschini, H. Kramer, E. N. van Loo, V. J. Roman, and R. Finkers. 2018. UAV based soil salinity assessment of cropland. Geoderma. 338 : 502-512. 10.1016/j.geoderma.2018.09.046
25
Kong, L., Y. Xie, L. Hu, J. Si, and Z. Wang. 2017. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 7 : 43363. 10.1038/srep4336328233811PMC5324167
26
KOSTAT. 2020. 2019 Food Grain Consumption Survey. pp. 17-30.
27
Lelong, C. C. D., P. C. Pinet, and H. Poilvé. 1998. Hyperspectral imaging and stress mapping in agriculture. Remote. Sens. Environ. 66 : 179-191. 10.1016/S0034-4257(98)00049-2
28
Li, F., Y. Miao, S. D. Hennig, M. L. Gnyp, X. Chen, L. Jia, and G. Bareth. 2010. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 11 : 335-357. 10.1007/s11119-010-9165-6
29
Li, B., X. Xu, J. Han, L. Zhang, C. Bian, L. Jin, and J. Liu. 2019. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods. 15 : 15. 10.1186/s13007-019-0399-730792752PMC6371461
30
Luo, L., Y. Zhang, and G. Xu. 2020. How does nitrogen shape plant architecture? J. Exp. Bot. 71 : 4415-4427. 10.1093/jxb/eraa18732279073PMC7475096
31
Mahlein, A. K., U. Steiner, H. W. Dehne, and E. C. Oerke. 2010. Spectral signature of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11 : 413-431. 10.1007/s11119-010-9180-7
32
McKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140 : 315-322.
33
Merzlyak, M. N., A. A. Gitelson, O. B. Chivkunova, and V. Y. Rakitin. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106 : 135-141. 10.1034/j.1399-3054.1999.106119.x
34
Mishra, P., M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders. 2017. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 164 : 49-67. 10.1016/j.biosystemseng.2017.09.009
35
Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69 : 1376-1381. 10.1104/pp.69.6.137616662407PMC426422
36
Nebiker, S., M. Abächerli, N. Lack, and S. Läderach. 2016. Light- weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. ISPRS-Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 963-970. 10.5194/isprs-archives-XLI-B1-963-2016
37
Netto, A. T., E. Campostrini, J. G. de. Oliveira, and R. E. Bressan- Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 104 : 199-209. 10.1016/j.scienta.2004.08.013
38
Nutter, F. W. 1989. Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathol. 79 : 958-963. 10.1094/Phyto-79-958
39
Peñuelas, J., B. Frederic, and I. Filella. 1995. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica. 31 : 221-230.
40
Peñuelas, J. and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends. Plant. Sci. 3 : 151-156. 10.1016/S1360-1385(98)01213-8
41
Reyniers, M., D. J. J. Walvoort, and J. De Baardemaaker, 2006. A linear model to predict with a multi‐spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote. Sens. 27 : 4159-4179. 10.1080/01431160600791650
42
Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Proc. Third ERTS Symposium. NASA SP-351. 1 : 301-317.
43
Rumpf, T., A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, and L. Plümer. 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Compute. Electron. Agric. 74 : 91-99. 10.1016/j.compag.2010.06.009
44
Siegal, B. S. and A. F. H. Goetz. 1977. Effect of vegetation on rock and soil type discrimination, Photogramm. Eng. Rem. S. 43 : 191-196.
45
Sims, D. A. and J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 81 : 337-354. 10.1016/S0034-4257(02)00010-X
46
Vogelmann, J. E., B. N. Rock, and D. M. MOSS, 1993. Red edge spectral measurements from sugar maple leaves. Int. J. Remote. Sens. 14 : 1563-1575. 10.1080/01431169308953986
47
Wijitdechakul, J., S. Sasaki, Y. Kiyoki, and C. Koopipat. 2016. UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management. International Electronics Symposium (IES). pp. 459-464. 10.1109/ELECSYM.2016.7861050
48
Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest. Meterol. 148 : 1230-1241. 10.1016/j.agrformet.2008.03.005
49
Xingyun, L., T. Zhang, X. Lu, D. S. Ellsworth, H. BassiriRad, C. You, D. Wang, P. He, Q. Deng, H. Liu, J. Mo, and Q. Ye. 2019. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 26 : 3585-3600. 10.1111/gcb.1507132146723
50
Xu, J., H. Cai, X. Wang, C. Ma, Y. Lu, Y. Ding, X. Wang, H. Chen, Y. Wang, and Q. Saddique. 2019. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water. Manag. 228 : 105904. 10.1016/j.agwat.2019.105904
51
Zarco-Tejada, P. J., V. González-Dugo, and J. A. Berni. 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote. Sens. Environ. 117 : 322-337. 10.1016/j.rse.2011.10.007
52
Zhang, L., Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, and X. Peng. 2019. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant. Sci. 10 : 1-18. 10.3389/fpls.2019.0127031649715PMC6794609
53
Zheng, T., P. F. Qi, Y. L. Cao, Y. N. Han, H. L. Ma, Z. R. Guo, Y. Wang, Y. Y. Qiao, S. Y. Hua, H. Y. Yu, J. P. Wang, J. Zhu, C. Y. Zhou, Y. Z. Zhang, Q. Chen, L. Kong, J. R. Wang, Q. T. Jiang, Z. H. Yan, X. J. Lan, G. Q. Fan, Y. M. Wei, and Y. L. Zheng. 2018. Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci. Rep. 8 : 11928. 10.1038/s41598-018-30451-430093727PMC6085318
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 65
  • No :4
  • Pages :377-385
  • Received Date :2020. 08. 07
  • Revised Date :2020. 09. 02
  • Accepted Date : 2020. 09. 12