All Issue

2020 Vol.65, Issue 4 Preview Page
December 2020. pp. 386-398
Abstract
References
1
Abe, F., E. Haque, H. Hisano, T. Tanaka, Y. Kamiya. M. Mikami, K. Kawaura, M. Endo, K. Onishi, T. Hayashi, and K. Sato. 2019. Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Reports 28(5) : 1362-1369. doi: 10.1016/j.celrep.2019.06.090. 10.1016/j.celrep.2019.06.09031365876
2
Acquaah, G. 2007. Principles of Plant Genetics and Breeding. Blackwell, Oxford. 385p.
3
Ali, S., P. Gladieux, M. Leconte, A. Gautier, A. F. Justesen, M. S. Hovmøller, J. Enjalbert, and C. de Vallavieille-Pope. 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathogens 10 : e1003903. doi: 10.1371/ journal.ppat.1003903. 10.1371/journal.ppat.100390324465211PMC3900651
4
Altenbach, S. B. and P. V. Allen. 2011. Transformation of the US bread wheat 'Butte 86' and silencing of omega-5 gliadin genes. GM Crops 2(1) : 66-73. doi: 10.4161/gmcr.2.1.15884. 10.4161/gmcr.2.1.1588421844700
5
Altenbach, S. B., H. C. Chang, M. H. Rowe, X. B. Yu, A. Simon-Buss, B. W. Seabourn, P. H. Green, and A. Alaedini. 2020. Reducing the immunogenic potential of wheat flour: silencing of alpha gliadin genes in a US Wheat cultivar. Frontiers in Plant Science 11 : 20. doi: 10.3389/fpls.2020.00020. 10.3389/fpls.2020.0002032161604PMC7052357
6
Altenbach, S. B., H. C. Chang, X. B. Yu, B. W. Seabourn, P. H. Green, and A. Alaedini. 2019. Elimination of omega-1, 2 gliadins from bread wheat (Triticum aestivum) flour: effects on immunogenic potential and end-use quality. Frontiers in Plant Science 10 : 580. doi: 10.3389/fpls.2019.00580. 10.3389/fpls.2019.0058031143195PMC6521778
7
Altenbach, S. B., H. Chang, A. Simon-Buss, Y. R. Jang, S. Denery-Papini, F. Pineau, Y. Q. Gu, N. Huo, S. H. Lim, C. S. Kang, and J. Y. Lee. 2018. Towards reducing the immunogenic potential of wheat flour: omega gliadins encoded by the D genome of hexaploid wheat may also harbor epitopes for the serious food allergy WDEIA. BMC Plant Biology 18 : 291. doi: 10.1186/s12870-018-1506-z. 10.1186/s12870-018-1506-z30463509PMC6249860
8
Asseng, S., F. Ewert, P. Martre, R. P. Rötter, D. B. Lobell, D. Cammarano, B. A. Kimball, M. J. Ottman, G. W. Wall, J. W. White, M. P. Reynolds, P. D. Alderman, P. V. V. Prasad, P. K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A. J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, A-K. Koehler, C. Müller, S. Naresh Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. Palosuo, E. Priesack, E. Eyshi Rezaei, A. C. Ruane, M. A. Semenov, I. Shcherbak, C. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. J. Thorburn, K. Waha, E. Wang, D. Wallach, J. Wolf, Z. Zhao, and Y. Zhu. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5 : 143-147. doi: 10.1038/nclimate2470. 10.1038/nclimate2470
9
Barro, F., J. C. Iehisa, M. J. Giménez, M. D. García‐Molina, C. V. Ozuna, I. Comino, C., Sousa, and J. Gil‐Humanes. 2016. Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing‐fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnology Journal 14(3) : 986-996. doi: 10.1111/pbi.12455. 10.1111/pbi.1245526300126
10
Bates, G. W. 1995. Electroporation of plant protoplasts and tissues. Methods in Cell Biology. 50 : 363-373. doi: 10.1016/S0091- 679X(08)61043-2. 10.1016/S0091-679X(08)61043-2
11
Battais, F., P. Courcoux, Y. Popineau, G. Kanny, D. A. Moneret- Vautrin, and S. Denery-Papini. 2005. Food allergy to wheat: differences in immunoglobulin E-binding proteins as a function of age or symptoms. Journal of Cereal Science 42(1) : 109-17. doi: 10.1016/j.jcs.2005.01.004. 10.1016/j.jcs.2005.01.004
12
Becker, D., H. Wieser, P. Koehler, A. Folck, K. H. Mühling, and C. Zörb. 2012. Protein composition and techno-functional properties of transgenic wheat with reduced α-gliadin content obtained by RNA interference. Journal of Applied Botany and Food Quality 85(1) : 23.
13
Beddow, J. M., P. G. Pardey, Y. Chai, T. M. Hurley, D. J. Kriticos, H.-J. Braun, R. F. Park, W. S. Cuddy, and T. Yonow. 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants 1(10) : 15132. doi: 10.1038/nplants.2015.132. 10.1038/nplants.2015.13227251389
14
Bliffeld, M., J. Mundy, I. Potrykus, and J. Fütterer. 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics 98 : 1079-1086. doi: 10.1007/s001220051170. 10.1007/s001220051170
15
Boynton, J. E., N. W. Gillham, E. H. Harris, J. P. Hosler, A. M. Johnson, A. R. Jones, B. L. Randolph-Anderson, D. Robertson, T. M. Klein, K. B. Shark, and J. C. Sanford. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858) : 1524-1538. doi: 10.1126/ science.2897716. 10.1126/science.28977162897716
16
Caio, G., U. Volta, A. Sapone, D. A. Leffler, R. D. Giorgio, C. Catassi, and A. Fasano. 2019. Celiac disease: a comprehensive current review. BMC Medicine 17: 142. doi: 10.1186/s12916- 019-1380-z. 10.1186/s12916-019-1380-z31331324PMC6647104
17
Cao, A., L. Xing, X. Wang, X. Yang, W. Wang, Y. Sun, C. Qian, J. Ni, Y. Chen, D. Liu, X. Wang, and P. Chen. 2011. Serine/ threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences 108(19) : 7727-7732. doi: 10.1073/pnas.1016981108. 10.1073/pnas.101698110821508323PMC3093467
18
Cheng, M., J. E. Fry, S. Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner, and Y. Wan. 1997. Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant physiology 115(3) : 971-980. doi: 10.1104/pp.115.3.971. 10.1104/pp.115.3.97112223854PMC158560
19
Cheng, M., B. A. Lowe, T. M. Spencer, X. Ye, and C. L. Armstrong. 2004. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular & Developmental Biology - Plant 40 : 31-45. doi: 10.1079/IVP2003501. 10.1079/IVP2003501
20
Chilton, M. D., M. H. Drummond, D. J. Merlo, and D. Sciaky. 1978. Highly conserved DNA of Ti plasmids overlaps T-DNA maintained in plant tumors. Nature 275(5676) : 147-149. doi: 10.1038/275147a0. 10.1038/275147a0
21
Chilton, M. D., M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon, and E. W. Nester. 1977. Stable incorporation of plasmid DNA into higher plant cells : the molecular basis of crown gall tumorigenesis. Cell 11(2) : 263-271. doi: 10.1016/0092-8674(77)90043-5. 10.1016/0092-8674(77)90043-5
22
Chinnusamy, V., A. Jagendorf, and J. K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Science 45(2) : 437-448. doi: 10.2135/cropsci2005.0437. 10.2135/cropsci2005.0437
23
Christou, P. 1997. Rice transformation: bombardment. Oryza: From Molecule to Plant pp. 197-203. doi: 10.1007/978-94-011-5794-0_19. 10.1007/978-94-011-5794-0_199291973
24
Christou, P., D. E. McCabe, and W. F. Swain. 1988. Stable transformation of soybean callus by DNA coated particles. Plant Physiology 87(3) : 671-674. doi: 10.1104/pp.87.3.67. 10.1104/pp.87.3.67116666205PMC1054818
25
Chung, H. S. 1975. Cereal scab causing mycotoxicosis in Korea and present status of mycotoxin researches. The Korean Journal of Mycology 3(1) : 31-36.
26
Cummins, G. B. and Y. Hiratsuka. 2003. Illustrated genera of rust fungi. St. Paul. MN: APS Press.
27
Dai, A. 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change 2(1) : 45-65. doi: 10.1002/wcc.81. 10.1002/wcc.81
28
Depicker, A., M. Van Montagu, and J. Schell. 1978. Homologous sequences in different Ti plasmids are essential for oncogenicity. Nature 275(5676) : 150-152. doi: 10.1038/275150a0. 10.1038/275150a0
29
Duplessis, S., C. A. Cuomo, Y. C. Lin, A. Aerts, E, Tisserant, C. Veneault-Fourrey, D. L. Joly, S. Hacquard, J. Amselem, B. L. Cantarel, R. Chiu, P. M. Coutinho, N. Feau, M. Field, P. Frey, E. Gelhaye, J. Goldberg, M. G. Grabherr, C. D. Kodira, A. Kohler, U. Kües, E. A. Lindquist, S. M. Lucas, R. Mago, E. Mauceli, E. Morin, C. Murat, J. L. Pangilinan, R. Park, M. Pearson, H. Quesneville, N. Rouhier, S. Sakthikumar, A. A. Salamov, J. Schmutz, B. Selles, H. Shapiro, P. Tanguay, G. A. Tuskan, B. Henrissat, Y. Van de Peer, P. Rouzé, J. G. Ellis, P. N. Dodds, J. E. Schein, S. Zhong, R. C. Hamelin, I. V. Grigoriev, L. J. Szabo, and F. Martin. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences 108(22) : 9166-9171. doi: 10.1073/pnas.1019315108. 10.1073/pnas.101931510821536894PMC3107277
30
Elli, L., L. Roncoroni, and M. T. Bardella. 2015. Non-celiac gluten sensitivity: Time for sifting the grain. World Journal of Gastroenterology 21(27) : 8221-8226. doi: 10.3748/wjg.v21.i27. 8221. 10.3748/wjg.v21.i27.822126217073PMC4507091
31
Farooq, M., H. Bramley, J. A. Palta, and K. H. M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences 30(6) : 491-507. doi: 10.1080/07352689.2011.615687. 10.1080/07352689.2011.615687
32
Fasano, A., A. Sapone, V. Zevallos, and D. Schuppan. 2015. Nonceliac gluten sensitivity. Gastroenterology 148(6) : 1195- 1204. doi: 10.1053/j.gastro.2014.12.049. 10.1053/j.gastro.2014.12.04925583468
33
Figueroa, M., K. E. Hammond-Kosack, and P. S. Solomon. 2018. A review of wheat diseases a field perspective. Molecular Plant Pathology 19(6) : 99-111. doi: 10.1111/mpp.12618. 10.1111/mpp.1261829045052PMC6638159
34
Fontaine, M. M., A. C. Steinemann, and M. J. Hayes. 2014. State drought programs and plans: survey of the Western United States. Natural Hazards Review 15(1) : 95-99. doi: 10.1061/ (ASCE)NH.1527-6996.0000094. 10.1061/(ASCE)NH.1527-6996.0000094
35
Fraley, R. T., S. G. Rogers, R. B. Horsch, P. R. Sanders, J. S. Flick, S. P. Adams, M. L. Bittner, L. A. Brand, C. L. Fink, J. S. Fry, G. R. Galluppi, S. B. Goldberg, N. L. Hoffmann, and S. C. Woo. 1983. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences 80(15) : 4803-4807. doi: 10.1073/pnas.80.15.4803. 10.1073/pnas.80.15.48036308651PMC384133
36
Frye, C. A., D. Tang, and R. W. Innes. 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proceedings of the National Academy of Sciences 98(1) : 373-378. doi: 10.1073/pnas.98.1.373. 10.1073/pnas.98.1.373
37
Gao, H., Y. Wang, P. Xu, and Z. Zhang. 2018. Overexpression of a WRKY Transcription Factor TaWRKY2 Enhances Drought Stress Tolerance in Transgenic Wheat. Frontiers Plant Science 9 : 997. doi: 10.3389/fpls.2018.00997. 10.3389/fpls.2018.0099730131813PMC6090177
38
Gelvin, S. B. 2003. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiology and Molecular Biology Reviews 67(1) : 16-37. doi: 10.1128/ MMBR.67.1.16-37.2003. 10.1128/MMBR.67.1.16-37.200312626681PMC150518
39
Gil-Humanes, J., F. Pistón, A. Hernando, J. B. Alvarez, P. R. Shewry, and F. Barro. 2008. Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. Journal of Cereal Science 48(3) : 565-568. doi: 10.1016/j.jcs.2008.03.005. 10.1016/j.jcs.2008.03.005
40
Gil-Humanes, J., F. Pistón, S. Tollefsen, L. M. Sollid, and F. Barro. 2010. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Sciences 107(39) : 17023-17028. doi: 10.1073/pnas.1007773107. 10.1073/pnas.100777310720829492PMC2947919
41
Groos, C., G. Gay, M.-R. Perretant, L. Gervais, M. Bernard, F. Dedryver, and G. Charmet. 2002. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white× red grain bread-wheat cross. Theoretical and Applied Genetics 104(1) : 39-47. doi: 10.1007/ s001220200004. 10.1007/s00122020000412579426
42
Grunberg, A. M., J. M. Costa, and R. J. Kratochvil. 2002. Pre-harvest sprouting in soft red winter wheat (Triticum aestivum L.) grown in the US mid-Atlantic. Cereal Research Communications 30(1-2) : 95-102. doi: 10.1007/BF03543395. 10.1007/BF03543395
43
Gupta, N. K., S. Agarwal, V. P. Agarwal, N. S. Nathawat, S. Gupta, and G. Singh. 2013. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum 35(6) : 1837-1842. doi: 10.1007/s11738-013-1221-1. 10.1007/s11738-013-1221-1
44
Gupta, P. K., R. R. Mir, A. Mohan, and J. Kumar. 2008. Wheat genomics: present status and future prospects. International Journal of Plant Genomics, 2008, 896451. doi: 10.1155/2008/ 896451. 10.1155/2008/89645118528518PMC2397558
45
Hayta, S., M. A. Smedley, S. U. Demir, R. Blundell, A. Hinchliffe, N. Atkinson, and W. A. Harwood. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15(1) : 121. doi: 10.1186/s13007-019-0503-z. 10.1186/s13007-019-0503-z31673278PMC6815027
46
Hiei, Y., T. Komari, and T. Kubo. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology 35(1-2) : 205-218. doi: 10.1023/A:1005847615493. 10.1023/A:10058476154939291974
47
Hiei, Y., S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6 10.1046/j.1365-313X.1994.6020271.x7920717
48
Hirochika, H., K. Sugimoto, Y. Otsuki, H. Tsugawa, and M. Kanda. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proceedings of the National Academy of Sciences 93(15) : 7783-7788. doi: 10.1073/pnas.93.15.7783. 10.1073/pnas.93.15.77838755553PMC38825
49
Igbinedion, S. O., J. Ansari, A. Vasikaran, F. N. Gavins, P. Jordan, M. Boktor, and J. S. Alexander. 2017. Non-celiac gluten sensitivity: All wheat attack is not celiac. World Journal of Gastroenterology 23(40) : 7201-7210. doi: 10.3748/wjg.v23. i40.7201. 10.3748/wjg.v23.i40.720129142467PMC5677194
50
International Wheat Genome Sequencing Consortium (IWGSC); IWGSC RefSeq principal investigators: Appels R, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 361(6403) : eaar7191. doi: 10.1126/science.aar7191. 10.1126/science.aar719130115783
51
Ishida, Y., M. Tsunashima, Y. Hiei, and T. Komari. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. In Agrobacterium Protocols 1223 : 189-198. doi: 10.1007/ 978-1-4939-1695-5_15. 10.1007/978-1-4939-1695-5_1525300841
52
Jackson, J. F., H. F. Linskens, and R. B. Inman. 2003. Genetic Transformation of Plants. Springer. Berlin. 202p. 10.1007/978-3-662-07424-4
53
Jiang, Y., B. Zeng, H. N. Zhao, M. Zhang, S. J. Xie, and J. S. Lai. 2012. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. Journal of Integrative Plant Biology 54(9) : 616-630. doi: 10.1111/j.1744- 7909.2012.01149.x. 10.1111/j.1744-7909.2012.01149.x22862992
54
Johnston, S. A., P. Q. Anziano, K. Shark, J. C. Sanford, and R. A. Butow. 1988. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science. 240(4858) : 1538-1541. doi: 10.1126/science.2836954. 10.1126/science.28369542836954
55
Johnston, S. A., M. Riedy, M. J. DeVit, J. C. Sanford, S. McElligott, and R. Sanders Williams. 1991. Biolistic transformation of animal tissue. In Vitro Cellular & Developmental Biology - Plant 27(1) : 11-14. doi: 10.1007/BF02632055. 10.1007/BF02632055
56
Jouanin, A., J. G. Schaart, L. A. Boyd, J. Cockram, F. J. Leigh, R. Bates, E. J. Wallington, R. G. F. Visser, and M. J. M. Smulders. 2019. Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biology 19(1) : 333. doi: 10.1186/s12870-019-1889-5. 10.1186/s12870-019-1889-531370789PMC6670228
57
Kalunke, R. M., S. Tundo, F. Sestili, F. Camerlengo, D. Lafiandra, R. Lupi, C. Larré, S. Denery-Papini, S. Islam, W. Ma, S. D'Amico, and S. Masci. 2020. Reduction of Allergenic Potential in Bread Wheat RNAi Transgenic Lines Silenced for CM3, CM16 and 0.28 ATI Genes. International Journal of Molecular Sciences 21(16) : 5817. doi: 10.3390/ijms21165817. 10.3390/ijms2116581732823634PMC7461106
58
Kennedy, B. W. 1980. Estimates of U.S. crop losses to prokaryote plant pathogens. Plant Disease 64(7) : 674-676. doi: 10.1094/ PD-64-674. 10.1094/PD-64-674
59
Khatkar, B. S., R. J. Fido, A. S. Tatham, and J. D. Schofield. 2002. Functional properties of wheat gliadins. I. Effects on mixing characteristics and bread making quality. Journal of Cereal Science 35(3) : 299-306. doi: 10.1006/jcrs.2001.0429. 10.1006/jcrs.2001.0429
60
Klein, T. M., E. C. Harper, Z. Svab, J. C. Sanford, M. E. Fromm, and P. Maliga. 1988. Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proceedings of the National Academy of Sciences 85(22) : 8502-8505. doi: 10.1073/pnas.85.22.8502. 10.1073/pnas.85.22.850216593993PMC282486
61
Leonard, M. M., A. Sapone, C. Catassi, and A. Fasano. 2017. Celiac disease and nonceliac gluten sensitivity: A review. Jama. 318(7) : 647-656. doi: 10.1001/jama.2017.9730. 10.1001/jama.2017.973028810029
62
Lopatin, M. I. 1939. Influence of bacterial root canter on the development of the cherry tree in the orchard. Plant Prot. 18 : 167-173.
63
Lunn, G., B. Major, P. Kettlewell, and R. Scott. 2001. Mechanisms leading to excess alpha-amylase activity in wheat (Triticum aestivum, L) grain in the UK. Journal of Cereal Science 33(3) : 313-329. doi: 10.1006/jcrs.2001.0369. 10.1006/jcrs.2001.0369
64
Mackintosh, C. A., J. Lewis, L. E. Radmer, S. Shin, S. J. Heinen, L. A. Smith, M. N. Wyckoff, R. Dill-Macky, C. K. Evans, S. Kravchenko, G. D. Baldridge, R. J. Zeyen, and G. J. Muehlbauer. 2007. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Reports 26(4) : 479-488. doi: 10.1007/s00299-006-0265-8. 10.1007/s00299-006-0265-817103001PMC1824786
65
MAFRA. 2019. Ministry of Agriculture, Food and Rural Affairs Statistical Yearbook.
66
Makarevitch, I., S. K. Svitashev, and D. A. Somers. 2003. Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Molecular Biology 52(2) : 421-432. doi: 10.1023/A:1023968920830. 10.1023/A:102396892083012856947
67
Mamun, M. A., C. Tang, Y. Sun, Md. N. Islam, P. Liu, X. Wang, and Z. Kang. 2018. Wheat Gene TaATG8j Contributes to Stripe Rust Resistance. International Journal of Molecular Sciences 19 10.3390/ijms1906166629874811PMC6032272
68
Mao, X., H. Zhang, X. Qian, A. Li, G. Zhao, and R. Jing. 2012. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany 63(8) : 2933-2946. doi: 10.1093/jxb/err462. 10.1093/jxb/err46222330896PMC3350912
69
Martin, C., T. J. Herrman, T. Loughin, and S. Oentong. 1998. Micropycnometer measurement of single kernel density of healthy, sprouted, and scab damaged wheats. Cereal Chemistry 75(2) : 177-180. doi: 10.1094/CCHEM.1998.75.2.177. 10.1094/CCHEM.1998.75.2.177
70
McMullen, M., R. Jones, and D. Gellenberg. 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease 81(12) : 1340-1348. doi: 10.1094/PDIS.1997.81.12. 1340. 10.1094/PDIS.1997.81.12.134030861784
71
Menardo, F., T. Wicker, and B. Keller. 2017. Reconstructing the Evolutionary History of Powdery Mildew Lineages (Blumeria graminis) at Different Evolutionary Time Scales with NGS Data. Genome Biology and Evolution 9(2) : 446-456. doi: 10.1093/gbe/evx008. 10.1093/gbe/evx00828164219PMC5381671
72
Nganje, W. E., S. Katiebie, W. W. Wilson, F. L. Leistritz, and D. A. Bangsund. 2004. Economic impacts of fusarium head blight in wheat and barley: 1993-2001. North Dakota State University Agribusiness and Applied Economics Report 538. 53p. doi: 10.22004/ag.econ.23627.
73
Park, J. M., S. H. Shin, C. S. Kang, K. H. Kim, K. M. Cho, J. S. Choi, H. M. Kim, and J. C. Park. 2012. Fungicide Effects in Vitro and in Field Trials on Fusarium Head Blight of Wheat. Research in Plant Disease 18 10.5423/RPD.2012.18.3.194
74
Porter, J. R. and M. Gawith. 1999. Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 10(1) : 23-36. doi: 10.1016/S1161-0301(98)00047-1. 10.1016/S1161-0301(98)00047-1
75
Rachmawati, D. and H. Anzai. 2006. Studies on callus induction, plant regeneration and transformation of Javanica rice cultivars. Plant Biotechnology 23(5) : 521-524. doi: 10.5511/plantbio technology.23.521. 10.5511/plantbiotechnology.23.521
76
Ricker, A. J., J. G. Berbee, and E. B. Smalley. 1959. Effects of crown gall and hairy root on the growth of apple trees. Phytopathology. 49(2) : 88-90.
77
Ryu, J. G. and Y. W. Lee. 1990. Mycotoxins produced by Fusarium Isolates from Barley in Korea. Korean Journal of Plant Pathology 6(1) : 21-27.
78
Sánchez‐León, S., J. Gil-Humanes, C. V. Ozuna, M. J. Giménez, C. Sousa, D. F. Voytas, and F. Barro. 2018. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16(4) : 902-910. doi: 10.1111/pbi.12837. 10.1111/pbi.1283728921815PMC5867031
79
Sanford, J. C. 1988. The biolistic process. Trends in Biotechnology 6(12) : 299-302. doi: 10.1016/0167-7799(88)90023-6. 10.1016/0167-7799(88)90023-6
80
Sanford, J. C., M. J. Devit, J. A. Russell, F. D. Smith. P. R. Harpening, M. K. Roy, and S. A. Johnston. 1991. An improved helium driven biolistic device. Technique 3 : 3-16.
81
Sanford, J. C., T. M. Klein, E. D. Wolf, and N. Allen. 1987. Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology 5(1) : 27-37. doi: 10.1080/02726358708904533. 10.1080/02726358708904533
82
Sawahel, W. A. and A. H. Hassan. 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters 24(9) : 721-725. doi: 10.1023/ A: 1015294319114. 10.1023/A:1015294319114
83
Scerf, K. A., P. Koehler, and H. Wieser. 2016. Gluten and wheat sensitivities - An overview. Journal of Cereal Science 67 : 2-11. doi: 10.1016/j.jcs.2015.07.008. 10.1016/j.jcs.2015.07.008
84
Schroth, M. N., A. H. Mccain, J. H. Foott, and O. C. Huisman. 1988. Reduction in yield and vigor of grapevine caused by crown gall disease. Plant Disease 72(3) : 241-246. doi: 10.1094/ PD-72-0241. 10.1094/PD-72-0241
85
Shin, S. H., K. H. Kim, C. S. Kang, J. C. Park, J. N. Hyun, and C. S. Park. 2013. Effects of agronomic characteristics and grain morphology on pre-harvest sprouting in Korean wheat cultivar. Korean Journal of Breeding Science 45(4) : 346-357. doi: 10.9787/KJBS.2013.45.4.346. 10.9787/KJBS.2013.45.4.346
86
Sivamani, E., A. Bahieldin, J. M. Wraith, T. Al-Niemi, W. E. Dyer, T. H. D. Ho, and R. Qu. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science 155(1) : 1-9. doi: 0.1016/S0168-9452(99) 00247-2. 10.1016/S0168-9452(99)00247-2
87
Smith, F. D., P. R. Harpending, and J. C. Sanford, 1992. Biolistic transformation of prokaryotes: Factors that affect biolistic transformation of very small cells. Microbiology 138(1) : 239-248. doi: 10.1099/00221287-138-1-239. 10.1099/00221287-138-1-2391556553
88
Sollid, L. M., S. W. Qiao, R. P. Anderson, C. Gianfrani, and F. Koning. 2012. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64(6) : 455-460. doi: 10.1007/s00251-012- 0599-z. 10.1007/s00251-012-0599-z22322673PMC3349865
89
Statista. 2020. Topic: Gluten-Free Foods Market. https://www. statista.com/topics/2067/gluten-free-foods-market/ [Accessed 1 September 2020].
90
Thakur, P., S. Kumar, J. A. Malik, J. D. Berger, and H. Nayyar. 2010. Cold stress effects on reproductive development in grain crops: an overview. Environ. Environmental and Experimental Botany 67(3) : 429-443. doi: 10.1016/j.envexpbot.2009.09.004. 10.1016/j.envexpbot.2009.09.004
91
Tian, B., S. K. Talukder, J. Fu, A. K. Fritz, and H. N. Trick. 2018. Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. In Vitro Cellular & Developmental Biology - Plant 54(3) : 216-227. doi: 10.1007/s11627-018-9893-2. 10.1007/s11627-018-9893-229780215PMC5954006
92
Toffaletti, D. L., T. H. Rude, S. A. Johnston, D. T. Durack, and J. R. Perfect. 1993. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. Journal of Bacteriology 175(5) : 1405-1411. doi: 10.1128/jb.175.5.1405-1411.1993. 10.1128/JB.175.5.1405-1411.19938444802PMC193227
93
Tripathi P., R. C. Rabara, and P. J. Rushton. 2014. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239(2) : 255-266. doi: 10.1007/s00425-013-1985-y. 10.1007/s00425-013-1985-y24146023
94
Tye-Din, J. A., J. A. Stewart, J. A. Dromey, T. Beissbarth, D. A. van Heel, A. Tatham, K. Henderson, S. I. Mannering, C. Gianfrani, D. P., Jewell, A. V. S. Hill, J., McCluskey, J. Rossjohn, and R. P. Anderson. 2010. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Science Translational Medicine 2(41) : 41ra51. doi: 10.1126/scitranslmed.3001012. 10.1126/scitranslmed.300101220650871
95
Van Larebeke, N., G. Enbler, M. Holsters, S. Van Den Elsacker, I. Zaenen, R. A. Schilperoort, and J. Schell. 1974. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature. 252(5479) : 169-170. doi: 10.1038/252169a0. 10.1038/252169a04419109
96
Vasil, V., A. Castillo, M. Fromm, and I. K. Vasil. 1992. Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus. Nature Biotechnology 10(6) : 667-674. doi: 10.1038/nbt0692- 667. 10.1038/nbt0692-667
97
Wang, G.P., X. Y. Zhang, F. Li, Y. Luo, and W. Wang. 2010. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1) : 117-126. doi: 10.1007/ s11099-010-0016-5. 10.1007/s11099-010-0016-5
98
Wang, M., J. Yuan, L. Qin, W. Shi, G. Xia, and S. Liu. 2020. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnology Journal 18(3) : 791-804. doi: 10.1111/pbi.13247. 10.1111/pbi.1324731472082PMC7004906
99
Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiology 24(2) : 115-119. doi: 10.1016/j.fm.2006.07.004. 10.1016/j.fm.2006.07.00417008153
100
Xu, H., M. Zhao, Q. Zhang, Z. Xu, and Q. Xu. 2016. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breeding Science 66(5) : 659- 667. doi: doi.org/10.1270/jsbbs.16120. 10.1270/jsbbs.1612028163581PMC5282764
101
Xue, Z. Y., D. Y. Zhi, G. P. Xue, H. Zhang, Y. X. Zhao, and G. M. Xia. 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167(4) : 849-859. doi: 10.1016/j.plantsci.2004.05.034. 10.1016/j.plantsci.2004.05.034
102
Zaenen, I., N. Van Larebeke, H. Teuchy, M. Van Montagu, and J. Schell. 1974. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. Journal of Molecular Biology 86(1) : 109-127. doi: 10.1016/S0022-2836(74)80011-2. 10.1016/S0022-2836(74)80011-2
103
Zang, X., X. Geng, K. He, F. Wang, X. Tian, M. Xin, Y. Yao, Z. Hu, Z. Ni, Q. Sun, and H. Peng. 2018. Overexpression of the wheat (Triticum aestivum L.) TaPEPKR2 gene enhances heat and dehydration tolerance in both wheat and Arabidopsis. Frontiers in Plant Science 9 : 1710. doi: 10.3389/fpls.2018.01710. 10.3389/fpls.2018.0171030532762PMC6265509
104
Zang, X., X. Geng, F. Wang, Z. Liu, L. Zhang, Y. Zhao, X. Tian, Z. Ni, Y. Yao, M. Xin, Z. Hu, Q. Sun, and H. Peng. 2017. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology 17(1) : 14. doi: 10.1186/s12870-016-0958-2. 10.1186/s12870-016-0958-228088182PMC5237568
105
Zhang, Y., Y.. Bai, G. Wu, S. Zou, Y. Chen, C. Gao, and D. Tang. 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal 91(4) : 714-724. doi: 10.1111/tpj.13599. 10.1111/tpj.1359928502081
106
Zhang, Y., Z. Liang, Y. Zong, Y. Wang, J. Liu, K. Chen, J. Qiu, and C. Gao. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7(1) : 12617. doi: 10.1038/ ncomms12617. 10.1038/ncomms1261727558837PMC5007326
107
Zhu X., S. Liu, C. Meng, L. Qin, L. Kong, and G. Xia. 2013. WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Molecular Biology Reporter 31(5) : 1053-1067. doi: 10.1007/s11105-013-0565-4. 10.1007/s11105-013-0565-4
108
Zimin, A. V., D. Puiu, R. Hall, S. Kingan, B. J. Clavijo, and S. L. Salzberg. 2017. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11) : gix097. doi: 10.1093/gigascience/gix097. 10.1093/gigascience/gix097
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 65
  • No :4
  • Pages :386-398
  • Received Date :2020. 09. 10
  • Revised Date :2020. 10. 19
  • Accepted Date : 2020. 10. 19