All Issue

2018 Vol.63, Issue 2 Preview Page
June 2018. pp. 112-119
Heat stress during the ripening stage reduces the yield and quality of rice. Considering the adverse effects of global warming, it is necessary to breed heat stress tolerant rice cultivars and analyze their stress tolerance characteristics. We investigated the ripening characteristics and antioxidant enzyme activity of Ilmi under heat stress condition during the ripening stage. Ripening rate, 1000 brown grain weight, and rice quality of Ilmi were not significantly changed by heat stress during the ripening stage. Leaf chlorophyll, chlorophyll a/b ratio, and malondialdehyde (MDA) contents of Ilmi leaves were also less changed than those of Ilpum. These results strongly suggested that Ilmi has heat tolerance characteristics during the ripening stage. Analysis of antioxidant enzyme activity of Ilmi revealed that peroxidase (POX) activity was significantly higher than that of Ilpum, and showed a significant correlation with the change in chlorophyll a/b ratio and hydrogen peroxide content of flag leaves of Ilmi. These data suggest that the high POX enzyme activity of Ilmi could be considered one of its major heat tolerance characteristics.

  1. Almeselmani, M., P. S. Deshmukh, R. K. Sairam, S. R. Kushwaha, and T. P. Singh. 2006. Protective role of antioxidant enzyme under high temperature stress. Plant Science 171 : 382-388.
  2. Asada, K. and M. Takahashi. 1987. Photoinhibition. In:Kyle D.J., Osmond C.B., Arntzen C.J (eds.). Production and Scavenging of active Oxygen in Photosynthesis. Amsterdam: Elsevier P. 227-287.
  3. Asatsuma, S., C. Sawada, A. Kitajim, T. Asakura, and T. Mitsui. 2006. a-amylase affects starch accumulation in rice grains. Journal of Applied Glycoscience 53 : 187-192.
  4. Bhattacharjee, S. 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plant. Current Science 89(7) : 1113-1121.
  5. Chen, G., Z. Q. Q. Wang, Liu, F. Xiong, Y. J. Gu, and G. J. Gu. 2006. Development and substance accumulation of caryopsis in transgenic rice with antisense Wx gene. Rice Science 13 : 106-12.
  6. Cheng, F., L. Zhong, N. Zhao, Y. Liu, and G. Zhang. 2005. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul. 46 : 87-95.
  7. Dat J. F., H. Lopez-Delgado, C. H. Foyer, and M. I. Scott. 1998. Parallel changes in H2O2 and catalase during thermos-tolerance induced by salicylic acid or heat acclimation in mustard seedling. Plant Physiology 110: 1351-1357.
  8. Dat, J. F., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inze, and V. Bresusegem. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57 : 779-795.
  9. Dolferus, R., X. M. Ji, and R. A. Richards. 2011. Abiotic stress and control of grain number in cereals. e Plant Science 181 : 331-41.
  10. IPCC. 2013. Fifth Assessment Report (AR5). WMO/UNEP.
  11. Jeong, J. U., Y. S. Shin, I. S. Choi, J. K. Chang, M. K. Kim, J. H. Lee, H. M. Park, C. I. Yang, Y. H. Jeon, J. P. Suh, I. B. Choi, J. M. Jeong, N. S. Sung, J. H. Lee, M. R. Yoon, and C. K. Kim. 2016. Blast resistant early maturing rice ‘Jungmo 1024’ with high temperature tolerance during grain filling stage. Korean J. Breed. Sci. 48(1) : 72-84.
  12. Kaneko, K., M. Sasaki, N. Kuribayashi, H. Suzuki, Y. Sasuga, T. Shiraya, T. Inomata, K. Itoh, M. Baslam, and T. Mitsui. 2016. Proteomic and glycomic characterization of rice chalky grains produced under moderate and high temperature conditions in field system. Rice 9:26.
  13. Kim, J., J. Shon, C. Lee, Y. Yong, W. Yang, Y. Kim, and B. Lee. 2011. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research 122 : 207-213.
  14. Kramer, P. J. and T. Kozlowski. 1979. Physiology of wood plants. Academic Press, New York, pp. 811.
  15. Kura-Hotta, M., K. Satho, and S. Kathh. 1987. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seeding. Plant cell physiology 28(7), 1321-1329.
  16. Lloret, F., A. Escudero, J. M. Iriondo, J. Martínez-Vilalta, and F. Valladares. 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biol 18(3), 797-805.
  17. Majid, K., G. Roza, J.S. Shahzad, and Z. M. Roghayyeh. 2011. The leaf chlorophyll content and stress resistance relationship considering in Corn cultivars (Zea. Mays). Advances in Environmental Biology 5(1), 118-122, 2011.
  18. Morita, S. 2011. High temperature damage in rice and its measures. Tokyo : Nosan Gyoson Bunka Kyokai.15655104PMC4246861
  19. Morita, S., J. Yonemaru, and J. Takanashi. 2005. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of Botany 95 : 695-701.
  20. Nakagawa, H., H. Tanaka, N. Tano, and H. Nagahata. 2006. Effects of leaf and panicle clipping on the occurrence of various types of chalky kernels in rice. Hokuriku Crop Science 41 : 32-44.
  21. Pearcy, R. W. and D. A. Sims. 1994. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In Ecophysiological Processes Above and Below Ground. Eds. M.M. Caldwell and R.W. Pearcy. Academic Press, New York, pp. 145-174.
  22. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeni, G. S. Khush, and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences USA, 101 : 9971-9975.
  23. Porter, J. R. and M. Gawith. 1999. Temperatures and the growth and development of wheat. European Journal of Agronomy. 10: 23-36.
  24. Sairam, R. K. G. C. Srivastava. and D. C. Saxena. 2000. Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotype. BIOLOGIA PLANTARUM 43(2) : 245-251.
  25. Savicka, M. and N. Skute. 2010. Effects of high temperature on malondialdehyde content superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56(1) : 26-33.
  26. Shamsi, K. 2010. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal & Plant Sciences 8(3) : 1051- 1060.
  27. Shon, J. Y., J. H. Kim, C. K. Lee, and W. H. Yang. 2015. Effect of high temperature on leaf physiological changes as chlorophyll composition and photosynthesis rate of rice. Korean J. Crop Sci. 60(3) : 266-272.
  28. Siebert, S., F. Ewert, E. E. Rezaei, H. Kage, and B. R. Gra. 2014. Impact of heat stress on crop yield-on the importance of considering canopy temperature. Environmental Research Letters 9 : 044012.
  29. Tashiro, T. and I. F. Wardlaw. 1991. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Australian Journal of Agricultura Research 42 : 485-496.
  30. Terashima, K., Y. Saito, N. Sakai, T. Watanabe, T. Ogata, and S. Akita. 2001. Effects of high air temperature in summer of 1999 on ripening and grain quality of rice. Japanese Journal of crop science 70 : 449-458.
  31. Ugarte, C., D. F. Calderini, and G. A. Slafer. 2007. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crop Research 100 : 240-8.
  32. Yang, W. 2006. Physiological characterization of high yielding genotypes of rice (Oriza sativa L.) in the tropical irrigated system. University of Philippines at Los Banos. Ph. D. Thesis. pp. 51-52.
  33. Yugandhar, P., K. B. Ramana, P. Madhusmita, P. V. Vishnu, R. D. Nageswara, R. V. Sitapathi, D. Subrahmanyam, and N. Sarla. 2013. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 6 : 36.
  34. Zhang, H., L. Duan, J. S. Dai, C. Q. Zhang, J. Li, M. H. Gu, Q. Q. Liu., Y. Zhu. 2014. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing slicing efficiency of Wx pre-mRNA. Theoretical and Applied Genetics 127(2) : 273-282.