All Issue

2018 Vol.63, Issue 3 Preview Page
September 2018. pp. 257-264

The recent global climate change induced the drought, flooding, and insect pest outbreaks. These caused the severe damage to crop yield in the domesticated field and occurrence change of insect pest species. The sap-sucking insect pest, aphids are common in soybean [Glycine max (L.) Merr.] and cause serious yield losses. Thus, developing resistance cultivars is promising and efficient strategy to prevent the significant yield losses by aphid and screening germplasm is the essential procedure to achieve this goal. We tried to establish a resistance test indicator for foxglove aphid, Aulacorthum solani (Kaltenbach), in soybean and found that plant damage degree or infested plant damage is most suitable one. Also we screened around 1,200 of soybean germplasm including wild and cultivated species for its resistance to foxglove aphid from the various origins, and 67 soybeans, including PI 366121, showed antixenosis resistance, 31 germplasms among 67 antixenosis germplasms were showed antibiosis to foxglove aphid with non–choice test. The identified foxglove aphid resistant soybean resources showed significantly low rate in survival test. Furthermore, resistance type, (i.e., antibiosis or antixenosis) of each candidate were varied. In this research, we established the screening index for foxglove aphid resistance in soybean, and identified the resistance varieties. This result could be useful resources in breeding for new foxglove aphid resistance soybean cultivars, and provide fundamental information to investigate the resistance mechanism in soybean.

  1. Aoyama, T., K. Fukui, K. Takamatsu, Y. Hashimoto, and T. Yamamoto. 2000. Soy protein and its hydrolysate reduce body fat of dietary obese rats and generically obese mice (yellow KK). Nutrition. 16 : 349-354.10.1016/S0899-9007(00)00230-6
  2. Beckendorf, E. A., M. A. Catangui, and W. E. Riedell. 2008. Soybean aphid feeding injury and soybean yield, yield components, and seed composition. Agronomy Journal. 100(2) : 237-246.10.2134/agrojnl2007.0207
  3. Blackman, R. L. and V. F. Eastop. 1986. Aphids on the world's crops: An identification and information guide. John Wiley and Sons, city, country. 466.
  4. Cevik, V. and G. King. 2002. High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet August. 105 : 346-354.
  5. Diaz-Montano, J. C., J. L. Reese, R. C. Leslie, and T. S. William. 2007. Feeding Behavior by the Soybean Aphid (Hemiptera: Aphididae) on Resistant and Susceptible Soybean Genotypes. Journal of Economic Entomology. 333(6) : 566-573.10.1093/jee/100.3.984
  6. Gregory, P. J., S. N. Johnson, A. C. Newton, and J. S. I. Ingram. 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60 : 2827-2838.10.1093/jxb/erp08019380424
  7. Hany, A. El-Shemy. 2013. Soybean-pest resistance. Intech. Rijeka.
  8. Hesler, L. S. and K. E. Dashiell. 2011. Antixenosis to the soybean aphid in soybean lines. Open Entomol. J. 5 : 39-44.10.2174/1874407901105010039
  9. Hill, C. B., L. Crull, T. K. Herman, D. J. Voegtlin, and G. L. Hartman. 2010. A new soybean aphid (Hemiptera: Aphididae) biotype identified. Journal of Economic Entomology. 103(2) : 509-515.10.1603/EC0917920429468
  10. Hill, C. B., Y. Li, and G. L. Hartman. 2004. Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). J. Econ. Entomol. 97 : 1071-1077.10.1603/0022-0493(2004)097[1071:ROGSAV]2.0.CO;215279293
  11. Hill, C. B., Y. Li, and G. L. Hartman. 2006a. A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci. 46 : 1601-1605.10.2135/cropsci2005.11-0421
  12. Hill, C. B., Y. Li, and G. L. Hartman. 2006b. Soybean aphid resistance in soybean Jackson is controlled by a single dominant gene. Crop Sci. 46 : 1606-1608.10.2135/cropsci2005.11-0421
  13. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, pp. 976.
  14. Jeon, H. Y. and H. H. Kim. 2006. Damage and seasonal occurrence of major insect pests by cropping period in environmentally friendly lettuce greenhouse. Korean J. Appl. Entomol. 45 : 275-282.
  15. Lee, J. S., M. H. Yoo, J. K. Jung, K. D. Bilyeu, J. D. Lee, and S. T. Kang. 2015. Detection of novel QTLs for foxglove aphid resistance in soybean. Theor Appl Genet. 128 : 1481-1488.10.1007/s00122-015-2519-825904004
  16. Lee, S. G., H. H. Kim, T. H. Kim, G. J. Park, K. H. Kim, and J. S. Kim. 2008. Development Model of the Foxglove Aphid, Aulacorthum solani (Kaltenbach) on Lettuce. Korean Journal of Applied Entomology. 47 : 359-364.10.5656/KSAE.2008.47.4.359
  17. Li, Y., C. B. Hill, and G. L. Hartman. 2004. Effect of three resistant soybean genotypes on the fecundity, mortality, and maturation of soybean aphid (Homoptera: Aphididae). Journal of Economic Entomology. 97(3) : 1106-1111.10.1093/jee/97.3.110615279297
  18. MAFRA. 2017. Agriculture, Food and Rural Affairs Statistics Yearbook, 2017. Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.
  19. Mensah, C., C. DiFonzo, R. L. Nelson, and D. Wang. 2005. Resistance to soybean aphid in early maturing soybean germplasm. Crop Science. 45(6) : 2228-2233.10.2135/cropsci2004.0680
  20. Mian, M. A. R., S. T. Kang, S. E. Beil, and R. B. Hammond. 2008. Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theor Appl Genet. 117 : 955-962.10.1007/s00122-008-0835-y18626623
  21. Ohnishi, S., N. Miyake, T. Takeuchi, F. Kousaka, S. Hiura, O. Kanehira, and Y. Tanaka. 2012. Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid. Breeding science. 61(5) : 618-624.10.1270/jsbbs.61.61823136500PMC3406790
  22. Sato, D., H. Akashi, M. Sugimoto, M. Tomita, and T. Soga. 2013. Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach. Journal of Chromatography. 925 : 95-103.
  23. Sato, D., M. Sugimoto, H. Akashi, M. Tomita, and T. Soga. 2014. Comparative metabolite profiling of foxglove aphids (Aulacorthum solani Kaltenbach) on leaves of resistant and susceptible soybean strains. Molecular BioSystems. 10(4) : 909-915.10.1039/c3mb70595a24514152
  24. Wang, S., X. Bao, Y. Sun, R. Chen, B. Zhai, and X. Bao. 1996. Effects of Soybean Aphid, Aphis glycines on Soybean Growth and Yield. Soybean Science. 15(3) : 243-247.
  25. Zhang, G. R., C. H. Gu, and D. C. Wang. 2009. Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor. Appl. Gen. 118 : 473-482.10.1007/s00122-008-0914-018982306
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 63
  • No :3
  • Pages :257-264
  • Received Date :2018. 08. 27
  • Accepted Date : 2018. 09. 16