All Issue

2018 Vol.63, Issue 4 Preview Page

December 2018. pp. 314-321
Abstract


References
1 

Ali, Z., A. Salam, F. M. Azhar, and I. A. Khan. 2007. Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. South African Journal of Botany 73 : 70-75.

10.1016/j.sajb.2006.08.005
2 

Alqudah, A. M., H. M. Youssef, A. Graner, and T. Schnurbusch. 2018. Natural variation and genetic make-up of leaf blade area in spring barley. Theoretical and Applied Genetics 131: 873-886.

10.1007/s00122-018-3053-229350248PMC5852197
3 

Amar, S. B., F. Brini, H. Sentenac, K. Masmoudi, and A. -A. Véry. 2014. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. Journal of Experimental Botany 65 : 213-222.

10.1093/jxb/ert36124192995PMC3883290
4 

Arabbeigi, M., A. Arzani, M. M. Majidi, R. Kiani, B. E. S. Tabatabaei, and F. Habibi. 2014. Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiologiae Plantarum 36 : 2243-2251.

10.1007/s11738-014-1602-0
5 

Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27 : 84-93.

10.1016/j.biotechadv.2008.09.00318950697
6 

Brini, F., I. Amara, K. Feki, M. Hanin, H. Khoudi, and K. Masmoudi. 2009. Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp Durum [Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiologiae Plantarum 31 : 145-154.

10.1007/s11738-008-0215-x
7 

Cotsaftis, O., D. Plett, N. Shirley, M. Tester, and M. Hrmova. 2012. A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7 : e39865.

10.1371/journal.pone.003986522808069PMC3394774
8 

El-Hendawy, S. E., Y. C. Hu, G. M. Yakout, A. M. Awad, S. E. Hafiz, and U. Schmidhalter. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy 22 : 243-253.

10.1016/j.eja.2004.03.002
9 

Himabindu, Y., T. Chakradhar, M. C. Reddy, A. Kanygin, K. E. Redding, and T. Chandrasekhar. 2016. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany 124 : 39-63.

10.1016/j.envexpbot.2015.11.010
10 

Hoque, M. A., E. Okuma, M. N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology 164 : 553-561.

10.1016/j.jplph.2006.03.01016650912
11 

Huang, S., W. Spielmeyer, E. S. Lagudah, and R. Munns. 2008. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J. Exp. Bot. 59 : 927-937.

10.1093/jxb/ern03318325922
12 

James, R. A., C. Blake, C. S. Byrt, and R. Munns. 2011. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany 62 : 2939-2947.

10.1093/jxb/err00321357768
13 

Khoufi, S., K. Khamassi, J. A. T. da Silva, R. Chaabane, and M. B. B. Naceur. 2012. Morphological and molecular characterization of six of the most frequently cultivated hard wheat varieties in Tunisia. Journal of Plant Breeding and Crop Science 4 : 106-114.

14 

Kim, S. H., D. Y. Kim, I. Yacoubi, and Y. W. Seo. 2014. Phenotypic and Genotypic Analyses of Drought Tolerance in Korean and Tunisian Wheat Cultivars. Plant Breeding and Biotechnology 2 : 139-150.

10.9787/PBB.2014.2.2.139
15 

Kim, S. H., J. Y. Kim, D. Y. Kim, J. S. Yoon, W. J. Jung, I. Yacoubi, and Y. W. Seo. 2016. Development of a SCAR marker associated with salt tolerance in durum wheat (<i>Triticum turgidum</i> ssp. <i>durum</i>) from a semi-arid region. Genes & Genomics 38(10) : 1-10.

10.1007/s13258-016-0438-y
16 

Li, C. X., W. G. Xu, R. Guo, J. Z. Zhang, X. L. Qi, L. Hu, and M. Z. Zhao. 2018. Molecular marker assisted breeding and genome composition analysis of Zhengmai 7698, an elite winter wheat cultivar. Scientific Reports 8 : 322.

10.1038/s41598-017-18726-829321647PMC5762757
17 

Machado, R. M. A. and R. P. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3: 30.

10.3390/horticulturae3020030
18 

Mansour, M. and M. Hachicha. 2014. The Vulnerability of Tunisian Agriculture to Climate Change. Emerging Technologies and Management of Crop Stress Tolerance : 485-500.

19 

Mian, A., R. J. Oomen, S. Isayenkov, H. Sentenac, F. J. Maathuis, and A. A. Very. 2011. Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J. 68 : 468-479.

10.1111/j.1365-313X.2011.04701.x21749504
20 

Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25 : 239-250.

10.1046/j.0016-8025.2001.00808.x11841667
21 

Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59 : 651-681.

10.1146/annurev.arplant.59.032607.09291118444910
22 

Munns, R. and M. Gilliham. 2015. Salinity tolerance of crops - what is the cost? New Phytol. 208 : 668-673.

10.1111/nph.1351926108441
23 

Munns, R., R. A. James, B. Xu, A. Athman, S. J. Conn, C. Jordans, C. S. Byrt, R. A. Hare, S. D. Tyerman, M. Tester, D. Plett, and M. Gilliham. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30 : 360-U173.

10.1038/nbt.212022407351
24 

Sairam, R., G. Srivastava, S. Agarwal, and R. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49 : 85.

10.1007/s10535-005-5091-2
25 

Saqib, Z. A., J. Akhtar, M. A. Ul-Haq, and I. Ahmad. 2012. Salt induced changes in leaf phenology of wheat plants are regulated by accumulation and distribution pattern of Na+ Ion. Pak. J. Agr. Sci. 49 : 141-148.

26 

Sathee, L., R. K. Sairam, V. Chinnusamy, and S. K. Jha. 2015. Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiologiae Plantarum 37 : 169.

10.1007/s11738-015-1910-z
27 

Shafi, M., J. Bakht, M. J. Hassan, M. Raziuddin, and G. Zhang. 2009. Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bulletin of Environmental Contamination and Toxicology 82 : 772-776.

10.1007/s00128-009-9707-719294326
28 

Shahzad, A., M. Ahmad, M. Iqbal, I. Ahmed, and G. M. Ali. 2012. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genetics and Molecular Research 11 : 679-692.

10.4238/2012.March.19.222535404
29 

Shi, H., B. H. Lee, S.J. Wu, and J. K. Zhu. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21 : 81-85.

10.1038/nbt76612469134
30 

Soriano, J. M., D. Villegas, M. E. Sorrells, and C. Royo. 2018. Durum Wheat Landraces from East and West Regions of the Mediterranean Basin Are Genetically Distinct for Yield Components and Phenology. Frontiers in Plant Science 9 : 80.

10.3389/fpls.2018.0008029472936PMC5809869
31 

Wu, H., L. Shabala, M. Zhou, G. Stefano, C. Pandolfi, S. Mancuso, and S. Shabala. 2015. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta 242 : 847-857.

10.1007/s00425-015-2317-125991439
32 

Yıldırım, M., H. Kılıç, E. Kendal, and T. Karahan. 2010. Applicability of Chlorophyll Meter Readings as Yield Predictor in Durum Wheat. Journal of Plant Nutrition 34 : 151-164.

10.1080/01904167.2011.533319
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 63
  • No :4
  • Pages :314-321
  • Received Date :2018. 09. 08
  • Revised Date :2018. 10. 01
  • Accepted Date : 2018. 10. 02