All Issue

2020 Vol.65, Issue 4 Preview Page
December 2020. pp. 447-456
Abstract
References
1
Bertioli, D. J., S. B. Cannon, L. Froenicke, G. Huang, A. D. Farmer, E. K. Cannon, X. Liu, D. Gao, J. Clevenger, and S. Dash. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics 48(4) : 438-446. 10.1038/ng.351726901068
2
Bertioli, D. J., S. C. Leal-Bertioli, and H. T. Stalker. 2016. The peanut genome: The history of the consortium and the structure of the genome of cultivated peanut and its diploid ancestors. Peanuts, Elsevier: 147-161. 10.1016/B978-1-63067-038-2.00005-8
3
Chen, X., Q. Lu, H. Liu, J. Zhang, Y. Hong, H. Lan, H. Li, J. Wang, H. Liu, and S. Li. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant 12(7) : 920-934. 10.1016/j.molp.2019.03.00530902685
4
Dhillon, S. S., A. V. Rake, and J. P. Miksche. 1980. Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA. Plant Physiology 65(6) : 1121- 1127. 10.1104/pp.65.6.112116661344PMC440494
5
Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology 14(8) : 2611-2620. 10.1111/j.1365-294X.2005.02553.x15969739
6
FAO. 2020. Food Outlook - Biannual Report on Global Food Markets. Rome, Italy.
7
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791. 10.1111/j.1558-5646.1985.tb00420.x28561359
8
Feng, S., X. Wang, X. Zhang, P. M. Dang, C. C. Holbrook, A. K. Culbreath, Y. Wu, and B. Guo. 2012. Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comparative and Functional Genomics 2012. 10.1155/2012/37376822745594PMC3382957
9
Grasso, A. N., V. Goldberg, E. A. Navajas, W. Iriarte, D. Gimeno, I. Aguilar, J. F. Medrano, G. Rincón, and G. Ciappesoni. 2014. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep. Genetics and Molecular Biology 37(2) : 389-395. 10.1590/S1415-4757201400030001125071404PMC4094612
10
Kang, Y. J., Y.-K. Ahn, K.-T. Kim, and T.-H. Jun. 2016. Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance. BMC Plant Biology 16(1) : 235. 10.1186/s12870-016-0931-027793102PMC5084322
11
Khera, P., H. Upadhyaya, M. Pandey, M. Roorkiwal, M. Sriswathi, P. Janila, Y. Guo, M. McKain, E. Nagy, and S. Knapp. 2013. SNP-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective KASPar genotyping assays. Plant Genome 6 : 1-11. 10.3835/plantgenome2013.06.0019
12
Kim, K.-S., D. Lee, S. B. Bae, Y.-C. Kim, I.-S. Choi, S. T. Kim, T.-H. Lee, and T.-H. Jun. 2017. Development of SNP-Based Molecular Markers by Re-Sequencing Strategy in Peanut. Plant Breeding and Biotechnology 5(4) : 325-333. 10.9787/PBB.2017.5.4.325
13
Kottapalli, K. R., M. D. Burow, G. Burow, J. Burke, and N. Puppala. 2007. Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Science 47(4) : 1718-1727. 10.2135/cropsci2006.06.0407
14
Landjeva, S., V. Korzun, and G. Ganeva. 2006. Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925-2003 using microsatellites. Genetic Resources and Crop Evolution 53(8) : 1605-1614. 10.1007/s10722-005-8718-4
15
Lee, J., N. K. Izzah, M. Jayakodi, S. Perumal, H. J. Joh, H. J. Lee, S.-C. Lee, J. Y. Park, K.-W. Yang, and I.-S. Nou. 2015. Genome- wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biology 15(1) : 1-11. 10.1186/s12870-015-0424-625644124PMC4323122
16
Peakall, R. and P. E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1) : 288-295. 10.1111/j.1471-8286.2005.01155.x
17
Rasheed, A., Y. Hao, X. Xia, A. Khan, Y. Xu, R. K. Varshney, and Z. He. 2017. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Molecular Plant 10(8) : 1047-1064. 10.1016/j.molp.2017.06.00828669791
18
Ren, J., D. Sun, L. Chen, F. M. You, J. Wang, Y. Peng, E. Nevo, D. Sun, M.-C. Luo, and J. Peng. 2013. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. International Journal of Molecular Sciences 14(4) : 7061-7088. 10.3390/ijms1404706123538839PMC3645677
19
Ren, X.-P., H.-F. Jiang, B.-S. Liao, X.-J. Zhang, Y. Lei, G.-Q. Huang, L.-Y. Yan, and Y.-N. Chen. 2011. Distributing and genetic diversity of high oleic acid germplasm in Peanut (Arachia Hypogaea L.) core collection of China. Journal of Plant Genetic Resources 12(4) : 513-518.
20
Robledo, G., G. Lavia, and G. Seijo. 2009. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics 118(7) : 1295-1307. 10.1007/s00122-009-0981-x19234686
21
Saghai-Maroof, M. A., K. M. Soliman, R. A. Jorgensen and R. Allard. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences 81(24) : 8014-8018. 10.1073/pnas.81.24.80146096873PMC392284
22
Seijo, G., G. I. Lavia, A. Fernández, A. Krapovickas, D. A. Ducasse, D. J. Bertioli, and E. A. Moscone. 2007. Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. American Journal of Botany 94(12) : 1963-1971. 10.3732/ajb.94.12.196321636391
23
Singh, N., D. R. Choudhury, A. K. Singh, S. Kumar, K. Srinivasan, R. Tyagi, N. Singh, and R. Singh. 2013. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PloS One 8(12) : e84136. 10.1371/journal.pone.008413624367635PMC3868579
24
Smartt, J., W. Gregory, and M. P. Gregory. 1978. The genomes of Arachis hypogaea. L. Cytogenetic studies of putative genome donors. Euphytica 27(3) : 665-675. 10.1007/BF00023701
25
Smýkal, P., M. Nelson, J. Berger, and E. Von Wettberg. 2018. The Impact of Genetic Changes during Crop Domestication. Agronomy 8(7) : 119. 10.3390/agronomy8070119
26
Tambasco-Talhari, D., M. M. d. Alencar, C. C. P. d. Paz, G. M. d. Cruz, A. d. A. Rodrigues, I. U. Packer, L. L. Coutinho, and L. C. d. A. Regitano. 2005. Molecular marker heterozygosities and genetic distances as correlates of production traits in F1 bovine crosses. Genetics and Molecular Biology 28(2) : 218- 224. 10.1590/S1415-47572005000200007
27
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8) : 1596- 1599. 10.1093/molbev/msm09217488738
28
Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences 101(30) : 11030-11035. 10.1073/pnas.040420610115258291PMC491989
29
Temsch, E. M. and J. Greilhuber. 2000. Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43(3) : 449-451. 10.1139/g99-13010902707
30
Wang, Y., W. Liu, L. Xu, Y. Wang, Y. Chen, X. Luo, M. Tang, and L. Liu. 2017. Development of SNP markers based on transcriptome sequences and their application in germplasm identification in radish (Raphanus sativus L.). Molecular Breeding 37(3) : 26. 10.1007/s11032-017-0632-x
31
Yang, H., Y. Tao, Z. Zheng, C. Li, M. W. Sweetingham, and J. G. Howieson. 2012. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13(1) : 318. 10.1186/1471-2164-13-31822805587PMC3430595
32
Zhou, X., Y. Xia, X. Ren, Y. Chen, L. Huang, S. Huang, B. Liao, Y. Lei, L. Yan, and H. Jiang. 2014. Construction of a SNP- based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double- digest restriction-site-associated DNA sequencing (ddRAD seq). BMC Genomics 15(1) : 351. 10.1186/1471-2164-15-35124885639PMC4035077
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 65
  • No :4
  • Pages :447-456
  • Received Date :2020. 09. 02
  • Accepted Date : 2020. 09. 12