All Issue

2019 Vol.64, Issue 4 Preview Page

Original Research Article

31 December 2019. pp. 384-394
Abstract
References
1
Ahn, H., K. Jo, D. Jeong, M. Pak, J. Hur, W. Jung, and S. Kim. 2019a. PropaNet: Time-varying condition-specific transcriptional network construction by network propagation. Front. Plant. Sci. 10 : 698.
10.3389/fpls.2019.0069831258543PMC6587906
2
Ahn, H., I. Jung, H. Chae, D. Kang, W. Jung, and S. Kim. 2019b. HTR gene: a computational method to perform the integrated analysis of multiple heterogeneous time-series data: case analysis of cold and heat stress response signaling genes in Arabidopsis. BMC Bioinformatics. 20(S16) : 588.
10.1186/s12859-019-3072-231787073PMC6886170
3
Albihlal, W. S., I. Obomighie, T. Blein, R. Persad, I. Chernukhin, Crespi, M., and P. M. Mullineaux. 2018. Arabidopsis heat shock transcription factora1b regulates multiple developmental genes under benign and stress conditions. J. Exp. Bot. 69(11) : 2847-2862.
10.1093/jxb/ery14229697803PMC5961379
4
Asseng, S., F. Ewert, P. Martre, R. P. Rötter, D. B. Lobell, D. Cammarano, and J. W. White, et al. 2014. Rising temperatures reduce global wheat production. Nature Climate Change. 5(2) : 143-147.
10.1038/nclimate2470
5
Blakeslee, J. J., T. Spatola Rossi, and V. Kriechbaumer. 2019. Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 70(19) : 5041-5049.
10.1093/jxb/erz28331198972
6
Boden, S. A., M. Kavanová, E. J. Finnegan, and P. A. Wigge. 2013. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 14(6) : R65.
10.1186/gb-2013-14-6-r6523800039PMC4062847
7
Campbell, J. L., N. Y. Klueva, H. Zheng, J. Nieto-Sotelo, T. H., Ho, and H. T. Nguyen. 2001. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim. Biophys. Acta. 1517(2) : 270-277.
10.1016/S0167-4781(00)00292-X
8
Cheng, M. C., P. M. Liao, W. W. Kuo, and T. P. Lin. 2013. The Arabidopsis ethylene response factor1 regulates abiotic stress- responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162(3) : 1566-1582.
10.1104/pp.113.22191123719892PMC3707555
9
Deng, W., M. C. Casao, P. Wang, K. Sato, P. M. Hayes, E. J. Finnegan, and B. Trevaskis. 2015. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6 : 5882.
10.1038/ncomms688225562483
10
Díaz, A., M. Zikhali, A. S. Turner, P. Isaac, and D. A. Laurie. 2012. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PlosOne. 7(3) : e33234.
10.1371/journal.pone.003323422457747PMC3310869
11
Dixon, L. E., I. Karsai, T. Kiss, N. M. Adamski, Z. Liu, Y. Ding, V. Allard, S. A. Boden, and S. Griffiths. 2019. Vernalization1 controls developmental responses of winter wheat under high ambient temperatures. Development. 146(3) : dev172684.
10.1242/dev.17268430770359PMC6382010
12
Duan, Y. H., J. Guo, K. Ding, S. J. Wang, H. Zhang, X. W. Dai, Y. Y. Chen, F. Govers, L. L. Huang, and Z. S. Kang. 2011. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol. Biol. Rep. 38(1) : 301-307.
10.1007/s11033-010-0108-020349142
13
Ergün, N., S. Özçubukçu, M. Kolukirik, and Ö. Temizkan. 2014. Effects of temperature-heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. Acta Biol. Hung. 65(4) : 439-450.
10.1556/ABiol.65.2014.4.825475983
14
Farooq, M., H. Bramley, J. A. Palta, and K. H. M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences. 30(6) : 491-507.
10.1080/07352689.2011.615687
15
Franklin, K. A., S. H. Lee, D. Patel, S. V. Kumar, A. K. Spartz, C. Gu, S. Ye, P. Yu, G. Breen, J. D. Cohen, P. A. Wigge, and W. M. Gray. 2011. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. U. S. A. 108(50) : 20231-20235.
10.1073/pnas.111068210822123947PMC3250122
16
Gangappa, S. N., S. Berriri, and S. V. Kumar. 2017. PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Curr. Biol. 27(2) : 243-249.
10.1016/j.cub.2016.11.01228041792PMC5266789
17
Giménez, M. J., F. Pistón, and S. G. Atienza. 2011. Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta. 233(1) : 163-173.
10.1007/s00425-010-1290-y20960006
18
Giorno, F., M. Wolters-Arts, S. Grillo, K. D. Scharf, W. H. Vriezen, and C. Mariani. 2010. Developmental and heat stress- regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61(2) : 453-462.
10.1093/jxb/erp31619854799PMC2803211
19
Hasanuzzaman, M., K. Nahar, M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(5) : 9643-9684.
10.3390/ijms1405964323644891PMC3676804
20
Hütsch, B. W., D. Jahn, and S. Schubert. 2018. Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J. Agron. Crop Sci. 205(1) : 22-32.
10.1111/jac.12298
21
Islam, M. R., B. Feng, T. Chen, L. Tao, and G. Fu. 2018. Role of abscisic acid in thermal acclimation of plants. J. Plant Biol. 61(5) : 255-264.
10.1007/s12374-017-0429-9
22
Jeong, J., and G. Choi. 2013. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells. 35(5) : 371-380.
10.1007/s10059-013-0135-523708772PMC3887866
23
Khalil, S. I., H. M. S. El-Bassiouny, R. A. Hassanein, and H. A. Mostafa. 2009. Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust. J. Basic & Appl. Sci. 3(3) : 1517-1526.
24
Kumar, S. V., D. Lucyshyn, K. E. Jaeger, E. Alós, E. Alvey, N. P. Harberd, and P. A. Wigge. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 484(7393) : 242-245.
10.1038/nature1092822437497PMC4972390
25
Li, J., H. H. Xu, W. C. Liu, X. W. Zhang, and Y. T. Lu. 2015. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168(4) : 1777-1791.
10.1104/pp.15.0052326109425PMC4528753
26
Lim, C. J., K. A. Yang, J. K. Hong, J. S. Choi, D. J. Yun, J. C. Hong, W. S. Chung, S. Y. Lee, M. J. Cho, and C. O. Lim. 2006. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J. Plant Res. 119(4) : 373-383.
10.1007/s10265-006-0285-z16807682
27
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 25(4) : 402-408.
10.1006/meth.2001.126211846609
28
Matsukura, S., J. Mizoi, T. Yoshida, D. Todaka, Y. Ito, K. Maruyama, K. Shinozaki, and K. Yamaguchi-Shinozaki. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. 2010. Mol. Genet. Genomics. 283(2) : 185-196.
10.1007/s00438-009-0506-y20049613
29
Nishizawa, A., Y. Yabuta, and S. Shigeoka. 2008. Galactinol and Raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147(3) : 1251-1263.
10.1104/pp.108.12246518502973PMC2442551
30
Ohama, N., H. Sato, K. Shinozaki, and K. Yamaguchi-Shinozaki. (2017). Transcriptional regulatory network of plant heat stress. Trends Plant Sci. 22(1) : 53-65.
10.1016/j.tplants.2016.08.01527666516
31
Ozga, J. A., H. Kaur, R. P. Savada, and D. M. Reinecke. 2017. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. J. Exp. Bot. 68(8) : 1885-1894.
10.1093/jxb/erw46428011717
32
Paik, I., P. K. Kathare, J.-I. Kim, and E. Huq. 2017. Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant. 10(8) : 1035-1046.
10.1016/j.molp.2017.07.00228711729PMC5551451
33
Pearce, S., N. Kippes, A. Chen, J. M. Debernardi, and J. Dubcovsky. 2016. RNA-seq studies using wheat Phytochrome B and Phytochrome C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biology. 16 : 141.
10.1186/s12870-016-0831-327329140PMC4915087
34
Pillet, J., A. Egert, P. Pieri, F. Lecourieux, C. Kappel, J. Charon, E. Gomes, F. Keller, S. Delrot, and D. Lecourieux. 2012. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol. 53(10) : 1776-1792.
10.1093/pcp/pcs12122952249
35
Sarkar, N. K., Y.-K. Kim, and A. Grover. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics. 10(1) : 393.
10.1186/1471-2164-10-39319703271PMC2746236
36
Schramm, F., J. Larkindale, E. Kiehlmann, A. Ganguli, G. Englich, E. Vierling, and P. Von Koskull-Döring. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53(2) : 264-274.
10.1111/j.1365-313X.2007.03334.x17999647
37
Shimosaka, E. and K. Ozawa. 2015. Overexpression of cold- inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breed. Sci. 65(5) : 363-371.
10.1270/jsbbs.65.36326719738PMC4671696
38
Shpiler, L. and A. Blum. 1991. Heat tolerance for yield and its components in different wheat cultivars. Euphytica. 51(3) : 257-263.
10.1007/BF00039727
39
Thomason, K., M. A. Babar, J. E. Erickson, M. Mulvaney, C. Beecher, and G. MacDonald. 2018. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoSONE. 13(6) : e0197919.
10.1371/journal.pone.019791929897945PMC5999278
40
Wang, X., L. Hou, Y. Lu, B. Wu, X. Gong, M. Liu, J. Wang, Q. Sun, E. Vierling, and S. Xu. 2018. Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J. Exp. Bot. 69(22) : 5531-5545.
10.1093/jxb/ery303
41
Xue, G. P., S. Sadat, J. Drenth, and C. L. McIntyre. 2014. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65(2) : 539-557.
10.1093/jxb/ert39924323502PMC3904712
42
Young, T. E., J. Ling, C. J. Geisler-Lee, R. L. Tanguay C. Caldwell, and D. R. Gallie. 2001. Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol. 127(3) : 777-791.
10.1104/pp.01016011706162PMC129251
43
Zhang, N., E., Vierling, and S. J. Tonsor. 2016. Adaptive divergence in transcriptome response to heat and acclimation in Arabidopsis thaliana plants from contrasting climates. Biorxiv. 044446.
10.1101/044446
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 64
  • No :4
  • Pages :384-394
  • Received Date : 2019-11-12
  • Revised Date : 2019-11-27
  • Accepted Date : 2019-12-06