All Issue

2018 Vol.63, Issue 3 Preview Page
September 2018. pp. 239-247
Abstract
Soybean produces three major types of isoflavones, daidzein, genistein, and glycitein aglycones and their glucosides and malonylglucosides. It has been known that malonylated glucosides are rapidly converted to their corresponding aglycones due to the unstable thermolabile glucoside malonates; therefore, the analytical study of malonylated glucosides has been insufficient. In this study, we analyzed the malonylglucoside content in soybean seeds. Isoflavone analysis of three soybean cultivars revealed that 81.5~90.0% of the total isoflavones were malonylglucosides, whereas aglycones were rarely detected. Moreover, the total isoflavone content increased during a 5-day germination period where growth regulators and coumaric acid treatments tended to yield higher isoflavone content than the normal germination treatment, however the differences were not significant; notably, the isoflavone accumulation trend continued with additional germination days. The content of malonylglucoside was higher than that of other isoflavones, which was 83.7~86.6% of the total isoflavone content in seeds with a 3-day germination period. Furthermore, isoflavones were significantly accumulated in the hypocotyl of seedlings with a 5-day germination period. The content of isoflavone in the hypocotyl of the Pungsannamul-kong was 10,240 ug/g when treated with coumaric acid, which was considerably higher than that of other cultivars and treatments. Additionally, soybean seeds heated at 60℃ for 1 hour produced higher isoflavone content than non-heated soybean seeds. Our results show that it is possible to increase the isoflavone content in soybean seeds through various treatments.
References
  1. Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone malonyltransferases GmlMaT1 and GmlMaT3 differently modify isoflavone glucosides in soybean under various stresses. Front. Plant Sci. 8 : 735. doi:10.3389/fpls. 2017.00735
  2. Chung, W. K. 1998. Physicochemical and sensory characteristics of soybean sprouts in relation to spybean cultivars and culture period. Ph.D thesis of Seoul Natl. Univ.
  3. Coward, L., N. C. Barnes, K. D. R. Setchell, and S. Barnes. 1993. Genistein, Daidzein and their glucoside conjugates : Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 31 : 394-396.
  4. Dhayakaran, R. P. A., S. Neethirajans, J. Xue, and J. Shi. 2015. Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT food Sci. Technol. 63 : 859-865.
  5. Edwards, R., S. A. Tiller, and A. D. Parry. 1997. The effect of plant age and nodulation on the isoflavonoid content of red clover. Plant Physiol. 150:603-610.10.1016/S0176-1617(97)80326-4
  6. Franke, A. A., L. J. Custer, C. M. Cerna, and K. K. Narala. 1994. Quantitation of phytoestogens in legumes by HPLC. J. Agric. Food. Chem. 42 : 1905-1913.10.1021/jf00045a015
  7. Gutierrez-Gonzalez, J. J., S. K. Guttikonda, L. P. Tran, D. L. Aldrich, R. Zhong, O. Yu, H. T. Nguyen, and D. A. Sleper. 2010. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant and Cell Physiology. 51(6) : 936-948.10.1093/pcp/pcq06520430761
  8. He, X. G., L. Z. Lin, and L. Z. Lian. 1996. Analysis of flavonoids from red clover by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A. 755 : 127-132.10.1016/S0021-9673(96)00578-X
  9. Hutchins, A. M., J. L. Slavin, and J. W. Lampe. 1995. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J. Am. Diet. Assoc. 95 : 545-551.10.1016/S0002-8223(95)00149-2
  10. Jeon, S. H., K. A. Lee, and K. E. Byoun. 2005. Studies on changes of isoflavone and nutrients during germination of soybean varieties. Korean J. Human Ecology 14(3) : 485- 489.
  11. Kim, J. S., J. G. Kim, and W. J. Kim, 2004. Changes in isoflavone and oligosaccharides of soybeans during Germination. Korean J. Food Sci. Technol. 36(2) : 294-298
  12. Kim, S. R., H. D. Hong, and S. S. Kim. 1999. Some properties and contents of isoflavone in soybean and soybean foods. Korea Soybean Digest. 16(2) : 35-46.
  13. Kim, Y. H. and S. R. Kim. 1997. Isoflavone content in Korean soybean cultivars. Soonchunhyang J. Nat. Sci. 3(1) : 331- 337.
  14. Kim, Y. H., S. D. Kim, E. H. Hong, and W. S. Ahn. 1996. Physiological function of isoflavones and their genetic and environmental variations in soybean. Korean J. Crop Sci. 41(S) : 25-45.
  15. Ko, J. M., W. Y. Han, H. T. Kim, Y. H. Lee, M. S. Choi, B. W. Lee, S. U. Shin, J. H. Seo, K. W. Oh, H. T. Yun, M. G. Jeon, K. H. Choi, J. H. Shin, E. J. Lee, S. Yang, and I. S. Oh. 2016. Soybean Cultivar for Soy- paste, 'Uram' with Mechanization Harvesting, Large Seed, Disease Resistance and High Yield. Korean J. Breed. Sci. 48(3) : 301-306.10.9787/KJBS.2016.48.3.301
  16. Ko, K. P., Y. Yeo, J. H. Yoon, C. S. Kim, S. Tokudome, L. T. Ngoan, C. Koriyama, Y. K. Lim, S. H. Chang, H. R. Shin, D. Kang, S. K. Park, C. H Kang, and K. Y. Yoo. 2017. Plasma phytoestrogens concentration and risk of colorectal cancer in two different Asian populations. Clinical Nutrition http://dx.doi.org/10.1016/j.clnu.2017.07.01410.1016/j.clnu.2017.07.014
  17. Lee, E. S., H. D. Kim, J. C. Chae, and Y. H. Kim. 2008. Variation of isoflavone and saponin during maturity in black soybean. Korean J. Crop Sci. 53(1) : 34-41.
  18. Li, P., Q. Dong, S. Ge, X. He, J. Verdier, D. Li, and J. Zhao. 2016. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotech. J. 14 : 1604-1618.10.1111/pbi.1252426806316PMC5066740
  19. Lin, L. Z., X. G. He, M. Lindenmaire, J. Yang, M. Cleary, S. X. Qiu, and G. A. Cordell. 2000. LC-ESI-MS study of the flavonoid glycoside malonates of red clover. J. Agric. Food Chem. 48 : 354-365.10.1021/jf991002+10691640
  20. Manach, C.,G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polypenols in humans. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81 : 230S-242S.10.1093/ajcn/81.1.230S15640486
  21. Messina, M. 2014. Soy foods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 100 : 423S- 430S10.3945/ajcn.113.07146424898224
  22. Nielsen, I. L. and G. Williamson. 2007. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer 57 : 1-10.10.1080/0163558070126767717516857
  23. Record, I. R., I. E. Dreosti, and J. K. McInerney. 1995. The antioxidant activity of genistein in vitro. J. Nutr. Biochem. 6 : 481-485.10.1016/0955-2863(95)00076-C
  24. Rodriguez-Roque, M. J., M. A. Rojas-Grau, P. Elez-Martinez, O. Martin-Belloso. 2013. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 136 : 206-212.10.1016/j.foodchem.2012.07.11523017414
  25. Suh S. K., H. S. Kim, Y. J. Oh, K. H. Kim, S. K. Cho, Y. J. Kim, S. D. Kim, H. K. Park, M. S. Park, and S. Y. Cho. 1997. A new soybean variety for sprout with small seed and high yielding "Pungsan-namulkong". Korean J Breed 29 : 503.
  26. Toebes, A. H. W., V. Boer, J. A. C. Verkleij, H. Lingeman, and W. H. O. Ernst. 2005. Extraction of isoflavone malonylglucosides from Trifolium pratense L. J. Agric. Food. Chem. 53 : 4660-4666.10.1021/jf047995f15941297
  27. Tsukamoto, C., S. Shimada, K. Ijita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds : Changs in isoflavones, saponins and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43(5) : 1184-1192.10.1021/jf00053a012
  28. Wang, H. J. and P. A. Murpy. 1994. Isoflavone composition of American and Japanese soybeans in Iowa : Effects of variety, crop year, and location. J. Agric. Food Chem. 42 : 1674-1677.10.1021/jf00044a017
  29. Wu, A. H., R. G. Ziegler, A. Nomura, D. W. West, L. N. Kolonel, P. L. Horn-Ross, R. N. Hoover, and M. C. Pike. 1998. Soy intake and risk of breast cancer in Aans and Americans. Clin. Nutr. 68 : 1437S-1443S.
  30. Wu, Q., M. Wang, and J. E. Simon. 2003. Determination of isoflavones in red clover and related species by HPLC combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A. 1016 : 195-209.10.1016/j.chroma.2003.08.00114601839
  31. Yoneyama, K., T. Akashi, and T. Aoki. 2016. Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: Local gene and whole-genome duplications of prenyltransferase gene led to the structural diversity of soybean prenylated isoflavonoids. Plant Cell Physiol. 57(12) : 2497-2509.10.1093/pcp/pcw17827986914PMC5159607
  32. Yu, J., X, Bi, B. Yu, and D. Chen. 2016. Isoflavones: Anti- inflammatory benefit and possible caveats. Nutrients 8. 361; doi:10.3390/nu806036110.3390/nu8060361
  33. Yuk, H. J., Y. H. Song, M. J. Curtis-Long, D. W. Kim, S. G. Woo, Y. B. Lee, Z. Uddin, C. Y. Kim, and K. H. Park. 2016. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean leaves. J. Agric. Food Chem. 64 : 7315- 7324.10.1021/acs.jafc.6b0254310.1021/acs.jafc.6b04641
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 63
  • No :3
  • Pages :239-247
  • Received Date :2018. 04. 30
  • Accepted Date : 2018. 06. 24