All Issue

2019 Vol.64, Issue 4 Preview Page

Original Research Article

31 December 2019. pp. 432-440
Abstract
References
1
Almeida, G. D., D. Makumbi, C. Magorokosho, S. Nair, A. Borém, J.-M. Ribaut, M. Bänziger, B. M. Prasanna, J. Crossa, and R. Babu. 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126(3) : 583-600.
10.1007/s00122-012-2003-723124431PMC3579412
2
Baker, M. 2012. De novo genome assembly: what every biologist should know. Nat. Methods. 9 : 333.
10.1038/nmeth.1935
3
Bänzinger, M., G. O. Edmeades, D. L. Beck, and M. Bellon. 2000. Breeding for drought and N stress tolerance in maize: from theory to practice. CIMMYT, Mexico, D. F.
4
Bänzinger, M., P. S. Setimela, D. Hodson, and B. Vivek. 2006. Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agr. Water Manage. 80 : 1-3
10.1016/j.agwat.2005.07.014
5
Bassetti, P. and M. E. Westgate. 1993. Water deficit affects receptivity of maize silks. Crop Sci. 33 : 279-282.
10.2135/cropsci1993.0011183X003300020013x
6
Bawa, A., I. K. Addai, and J. X. Kugbe. 2015. Evaluation of some genotypes of maize (Zea mays L.) for tolerance to drought in Northern Ghana. Plant Biol. 5(6) : 19-29.
7
Birol, I., S. D. Jackman, C. B. Nielsen, J. Q. Qian, R. Varhol, G. Stazyk, R. D. Morin, Y. Zhao, M. Hirst, J. E. Schein, D. E. Horsman, J. M. Connors, R. D. Gascoyne, M. A. Marra, and S. J. M. Jones. 2009. De novo transcriptome assembly with ABySS. Bioinformatics. 25(21) : 2872-7.
10.1093/bioinformatics/btp36719528083
8
Bohnert, H. J., D. E. Nelson, and R. G. Jensen. 1995. Adaptations to environmental stresses. The plant cell. 7(7) : 1099-1111.
10.2307/387006012242400PMC160917
9
Bolaños, J. and G. O. Edmeades. 1993. Eight cycle of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 31 : 269-289.
10.1016/0378-4290(93)90066-V
10
Bolaños, J. and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research. 48 : 65-80.
10.1016/0378-4290(96)00036-6
12
Bray, E. A. 1993. Molecular responses to water deficit. Plant Physiol. 103(4) : 1035-1040.
10.1104/pp.103.4.103512231998PMC159086
13
Briskine, R. V. and K. K. Shimizu. 2017. Positional bias in variant calls against draft reference assemblies. BMC Genomics. 18 : 1.
10.1186/s12864-017-3637-228351369PMC5368935
14
Buckler, E. S., J. B. Holland, P. J. Bradbury, C. Acharya, P. J. Brown, C. Browne, E. Ersoz, S. Flint-Garcia, A. Garcia, J. C. Glaubitz, M. M. Goodman, C. Harjes, K. Guill, D. E. Kroon, S. Larsson, N. K. Lepak, H. Li, S. E. Mitchell, G. Pressoir, J. A. Peiffer, M. O. Rosas, T. R. Rocheford, M. C. Romay, S. Romero, S. Salvo, V. H. Sanchez, H. S. da Silva, Q. Sun, F. Tian, N. Upadyayula, D. Ware, H. Yates, J. Yu, Z. Zhang, S. Kresovich, and M. D. McMullen. 2009. The genetic architecture of maize flowering time. Science. 325 : 714-718.
10.1126/science.117427619661422
15
Byrne, P. F., J. Bolaños, G. O. Edmeades, and D. L. Eaton. 1995. Gains from selection under drought versus multilocation testing in related tropical maize populations. Crop Science. 35 : 63.
10.2135/cropsci1995.0011183X003500010011x
16
Chapman, S. C. and G. O. Edmeades. 1999. Selection improves drought tolerance in tropical maize populations : II. Direct and correlated responses among secondary traits. Crop Science. 39 : 1315-1324.
10.2135/cropsci1999.3951315x
17
Duan, J., C. Xia, G. Zhao, J. Jia, and X. Kong. 2012. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics. 13(1) : 392.
10.1186/1471-2164-13-39222891638PMC3485621
18
Edmeades, G. O., M. Bänziger, A. Elings, S. C. Chapman, and J. M. Ribaut. 1997. Recent advances in breeding for drought tolerance in maize. Applications of Systems Approaches at the Field Level. 63-78.
10.1007/978-94-017-0754-1_5
19
Edmeades, G. O., J. Bolaños, A. Elings, J. M. Ribaut, M. Bänziger, and M. E. Westgate. 2000. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E. and K. J. Boote. (eds). Physiology and Modeling Kernel Set in Maize. CSSA, Madison, WI, CSSA Special Publication No. 29. pp. 43-73.
20
Fan, H., Y. Xiao, Y. Yang, W. Xia, A. S. Mason, Z. H. Xia, F. Qiao, S. L. Zhao, and H. R. Tang. 2013. RNA-Seq analysis of Cocos nucifera : transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PloS one. 8(3) : e59997.
10.1371/journal.pone.005999723555859PMC3612046
21
Fuad-Hassan, A., F. Tardieu, and O. Turc. 2008. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant, Cell and Environ. 31 : 1349-1360.
10.1111/j.1365-3040.2008.01839.x18518916
22
Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29(7) : 644-52.
10.1038/nbt.188321572440PMC3571712
23
Gong, F., L. Yang, F. Tai, X. Hu, and W. Wang. 2014. "Omics" of maize stress response for sustainable food production: opportunities and challenges. Omics 18(12) : 714-732.
10.1089/omi.2014.012525401749PMC4253144
24
Hall, A. J., J. H. Lemcoff, and N. Trapani. 1981. Water stress before and during flowering in maize and its effects on yield, its components, and their determinants. Maydica. 26 : 19-38.
25
Harder, H. J., R. E. Carlson, and R. H. Shaw. 1982. Yield, yield components, and nutrient content of corn grains as influenced by post-silking moisture stress. Agronomy J. 74(2) : 275-278.
10.2134/agronj1982.00021962007400020005x
26
Kim, H. C., J.-C. Moon, J. Y. Kim, K. Song, K.-H. Kim, and B.-M. Lee. 2017. Evaluation of drought tolerance using anthesis-silking interval in maize. Korean J. Crop Sci. 62(1) : 24-31.
10.7740/kjcs.2016.62.1.024
27
Lehtimäki, N., M. Lintala, Y. Allahverdiyeva, E. M. Aro, and P. Mulo. 2010. Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. J Plant Physiol. 167 : 1018-1022.
10.1016/j.jplph.2010.02.00620392519
28
Li, R., C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang. 2009. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 25(15) : 1966-1997.
10.1093/bioinformatics/btp33619497933
29
Li, Y. X., C. Li, P. J. Bradbury, X. Liu, F. Lu, C. M. Romay, J. C. Glaubitz, X. Wu1, B. Peng, Y. Shi, Y. Song, D. Zhang, E. S. Buckler, Z. Zhang, Y. Li, and T. Wang. 2016. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J. 86 : 391-402.
10.1111/tpj.1317427012534
30
Lischer, H. E. L. and K. K. Shimizu. 2017. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics. 18 : 474.
10.1186/s12859-017-1911-629126390PMC5681816
31
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method. Methods. 25 : 402-408.
10.1006/meth.2001.126211846609
32
Lu, Y., Z. Hao, C. Xie, J. Crossa, J. L. Arus, S. Gao, B. S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S. Taba, G. Pan, X. Li, T. Rong, S. Zhang, and Y. Xu. 2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res. 124(1) : 37-45.
10.1016/j.fcr.2011.06.003
33
Manoli, A., A. Sturaro, S. Trevisan, S. Quaggiotti, and A. Nonis. 2012. Evaluation of candidate reference genes for qPCR in maize. J. Plant Physiol. 169 : 807-815.
10.1016/j.jplph.2012.01.01922459324
34
Moon, J.-C., S. Shin, H. C. Kim, K. Song, J. Y. Kim, K.-H. Kim, and B.-M. Lee. 2018. Assessment of the candidate genes of expression marker associated with drought stress in maize seedling. Korean J. Breed. Sci. 50(3) : 229-240.
10.9787/KJBS.2018.50.3.224
35
Moss, G. I. and L. A. Downey. 1971. Influence of drought stress on female gametophyte development in corn (Zea mays L.) and subsequent grain yield. Crop Sci. 11(3) : 368-372.
10.2135/cropsci1971.0011183X001100030017x
36
Mulo, P. 2011. Chloroplast-targeted ferredoxin-NADP+oxidoreductase (FNR): Structure, function and location. Biochim Biophys Acta. 1807 : 927-934.
10.1016/j.bbabio.2010.10.00120934402
37
Shendure, J. and H. Ji. 2008. Next-generation DNA sequencing. Nat Biotechnol. 26 : 1135-1145.
10.1038/nbt148618846087
38
Schulz, M. H., D. R. Zerbino, M. Vingron, and E. Birney. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8) : 1086-1092.
10.1093/bioinformatics/bts09422368243PMC3324515
39
Shin, S. H., J. S. Lee, S. G. Kim, T. H. Go, J. Y. Shon, S. G. Kang, J.-S. Lee, H. H. Bae, J.-T. Kim, K.-B. Shim, W. Yang, and M.-O. Woo. 2015. Yield of maize (Zea mays L.) logistically declined with increasing length of the consecutive visible wilting days during flowering. J. Crop Sci. Biotech. 18(4) : 237-248.
10.1007/s12892-015-0112-y
40
Song, K., K.-H. Kim, H. C. Kim, J.-C. Moon, J. Y. Kim, S.-B. Baek, Y. U. Kwon, and B.-M. Lee. 2015. Evaluation of drought tolerance in maize seedling using leaf rolling. Korean J. Crop sci. 60(1) : 8-16.
10.7740/kjcs.2014.60.1.008
41
Song, K., H. C. Kim, K.-H. Kim, J.-C. Moon, J. Y. Kim, S.-K. Lee, and B.-M. Lee. 2018. Gene Expression Analysis and Polymorphism Discovery to Investigate Drought Responsive System in Tropical Maize. Plant Breeding and Biotechnology. 6(4) : 354-362.
10.9787/PBB.2018.6.4.354
42
Treangen, T. J. and S. L. Salzberg. 2012. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13(1) : 36-46.
10.1038/nrg311722124482PMC3324860
43
Udomprasert, N., J. Kijjanon, K. C. Iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and yield of corn. Kastsart J. (Nat. Sci.). 39 : 546-551.
44
Westgate, M. E. and J. S. Boyer. 1985. Carbohydrate re-serves and reproductive development at low leaf water potentials in maize. Crop Sci. 25(5) : 762-769.
10.2135/cropsci1985.0011183X0025000500010x
45
Xia, Z., H. Xu, J. Zhai, D. Li, H. Luo, C. He, and X. Huang. 2011. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Molecular Biology. 77(3) : 299.
10.1007/s11103-011-9811-z21811850
46
Zhao, Q. T., Y. Wang, Y. M. Kong, D. Luo, X. Li, and P. Hao. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics. 12 (suppl. 14) : S2.
10.1186/1471-2105-12-S14-S222373417PMC3287467
47
Ziyomo, C. and R. Bernardo. 2013. Drought tolerance in maize: indirect selection through secondary traits versus genomewide selection. Crop Science. 53 : 1269.
10.2135/cropsci2012.11.0651
Information
  • Publisher :The Korean Society of Crop Science
  • Publisher(Ko) :한국작물학회
  • Journal Title :The Korean Journal of Crop Science
  • Journal Title(Ko) :한국작물학회지
  • Volume : 64
  • No :4
  • Pages :432-440
  • Received Date : 2019-11-02
  • Revised Date : 2019-11-11
  • Accepted Date : 2019-11-13